
1. Slick0100: Getting started with the Slick2D game library
2. Slick0110: Overview
3. Slick0120: Starting your program
4. Slick0130: The game loop
5. Slick0140: A first look at Slick2D bitmap graphics
6. Slick0150: A first look at sprite motion, collision detection,

and timing control
7. Slick0160: Using the draw and drawFlash methods.
8. Slick0170: Mouse and keyboard input
9. Slick0180: Sprite sheet animation, part 1

10. Slick0190: Sprite sheet animation, part 2
11. Slick0200: Developing a sprite class
12. Slick0210: Collision detection and sound
13. Slick0220: Simulating a pandemic



Slick0100: Getting started with the Slick2D game library
Learn how to install Slick2D in such a way that you can easily compile and execute
Slick2D programs from the command line with no need for a high level IDE.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
Download the required software

Text editors
The Slick2D distribution
The Java Development Kit

Install the required software
Create, compile, and execute your first Slick2D program

Create a source-code file
Compile and run the program

Create a batch file
Execute the batch file

Run the program
Summary
What's next?
Miscellaneous
Download source code

Preface

Turning the crank

As a professor of Computer Information Technology at Austin Community College, I teach
courses in game programming using both C++ and C#/XNA. I have long had a concern that
students enter my courses expecting to simply "turn the crank"
on a game engine such as
Dark GDK or XNA and have great games emerge from the other end of the process.
Unfortunately, it isn't quite that easy.



Anatomy of a game engine

Given time limitations and other restrictions, it is not practical to teach those students much
about the inner working of such game engines. Therefore, I have decided to publish a series
of modules on the anatomy of a game engine that my students, (and other interested
parties)
can read to learn about those inner workings.

First in a collection

Therefore, this module is the first in a collection of modules designed to teach you about
the anatomy of a typical game engine (sometimes called a game framework)
.

The Slick2D library

I have chosen to concentrate on a free game library named Slick2D
,(which is written in
Java)
for several reasons including the following:

Java is the language with which I am the most comfortable. Hence, I can probably do a
better job of explaining the anatomy of a game engine that uses Slick2D than would be
the case for a game engine written in C++, C#, Python, or some other programming
language.
Java has proven in recent years to be a commercially successful game programming
language. For example, I cite the commercial game named Minecraft
, written in Java,
for which apparently millions of copies have been sold. Also, Java is used for
developing apps for Android.
Slick2D is free and the source code for Slick2D is readily available.
The overall structure of a basic Slick2D game engine is very similar to Dark GDK and
XNA, and is probably similar to other game engines as well.
Java is platform independent.

Applicable to other environments as well

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to other
game engines written in different programming languages.

Purpose

The purpose of this module is to get you started, including showing you how to download
and install Slick2D, and how to compile and execute your first Slick2D program. Future
modules will start digging into and explaining the inner workings of a basic Slick2D game
engine.

What you should know

http://slick.ninjacave.com/
http://minecraft.net/


This series of modules is not intended for beginning programmers. As a minimum, you
should already know about fundamental programming concepts such as
if
statements, for
loops, while
loops, method or function calls, parameter passing, etc. Ideally, you will have
some object-oriented programming knowledge in a modern programming language such as
Java, C#, C++, or possibly Python or JavaScript.

You should also be relatively comfortable with the command-line interface, directory or
folder trees, batch or script files, etc.

Finally, you should also be comfortable downloading and installing software on the
machine and operating system of your choice.

What you will learn

In this module, you will learn how to download and install Slick2D on a Windows XP,
Vista, or Windows 7 machine and how to compile and execute a very simple Slick2D
program.
(If you are using a different operating system, you will need to translate this
information to your system of choice. However, since Java is platform independent, the
code details that I will discuss will apply to all or most platforms.)

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the figures and listings while you are reading
about them.

Figures

Figure 1
. Output from Slick2D during program startup.
Figure 2
. A default Slick2D game window.

Listings

Listing 1
. Slick2D program named Slick0100a.java.
Listing 2
. The file named CompileAndRun.bat.

Preview

Most of the Slick2D tutorials that you will find on the Internet will begin by telling you to
download and install a high-level IDE such as Eclipse or NetBeans. I won't do that.



While high-level IDEs are great for improving productivity for experienced programmers, I
consider them to be overkill for students just learning how to program. Not only are they
overkill, they also hide many details that beginning programmers need to understand.

Therefore, I will show you how to install Slick2D in such a way that you can easily compile
and execute Slick2D programs from the command line with no need for a high level IDE.
All you will need is a text editor (preferably color coded for Java syntax)
, the free Slick2D
distribution, and the free Java Development Kit from Oracle.

Download the required software

Text editors

There are numerous free text editors available on the Internet, some with and some without
Java syntax color coding. (In a pinch, even Windows Notepad will suffice.) Here are links to
a few of them.

JCreator
jGRASP
DrJava
Arachnophilia

The Slick2D distribution

I will be using this material in some of the Java OOP programming courses that I teach. I
expect that changes and improvements will be made to the Slick2D library over time.
However, it can be very confusing when different students in the same programming course
are using different versions of software, particularly if changes to the software are made
that are not backward compatible.

Therefore, to ensure that my students all download and use the same version of the software
in my courses, I will make a copy of a particular version of the Slick2D distribution
available by clicking here
. (Note: as of 06/06/15, this is a 64-bit version of the distribution.
The older 32-bit distribution is available here
.)

If you are not one of my students, you may prefer to go to the Slick2D
main page and select
the link to download the latest version of the distribution. Save that file because I will have
more to say about it later.

The Java Development Kit

http://www.jcreator.com/
http://www.jgrasp.org/
http://www.drjava.org/
http://www.arachnoid.com/arachnophilia/index.php
https://cnx.org/content/m45726/
https://cnx.org/content/m45726/
http://slick.ninjacave.com/


Go to
Oracle
and download the latest release of Java SE (standard edition)
that is
compatible with your system. Then open the
installation instructions
and select the link for
your system. For example, there is (or was)
a link on that page that reads:

JDK Installation for Microsoft Windows
- Describes how to install the JDK on
32-bit and 64-bit Microsoft Windows operating systems.

Follow the link to the installation instructions for your system and follow those instructions
to install the Java Development Kit. When doing the installation, pay attention to the link
that reads
Updating the PATH Environment Variable (Optional)
. This is where many of my
students encounter installation difficulties.

(Note that over time, some of these links may change. However, the general
concepts involved should continue to be relevant.)

There are also issues dealing with something called the classpath
, but I will explain how to
deal with those issues later.

Install the required software

I am assuming that you can install the text editor and the JDK with no help from me.
Therefore, I will concentrate on installing and configuring the Slick2D software. (Note that
these instructions apply to the 64-bit versions. Instructions for installing the 32-bit version
were similar.)

The Code folder tree

Begin by creating a folder somewhere on your disk named Code
(or some other similar
name of your choosing)
.

Create three sub-folders
under the Code
folder having the following names:

jars
lwjglbin
Slick0100a (this will change from one program to the next)

(See Download source code
to download folders named
jars
, lwjglbin
, and Slick0100a
already populated with the minimum required 64-bit Windows-compatible software.)

Extract the contents of the zip file

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html
http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html#path


Using whatever program you can find to open a zip file (I use a program named WinZip)
,
extract and save the following files from the lib folder in the 64-bit Slick2D distribution
that you downloaded earlier
.

lwjgl.jar
slick.jar
natives-windows.jar

There are many other files in the Slick2D distribution file, but we don't need them just yet.
If we need them in a future module, I will tell you.

These three files are needed to satisfy the classpath
and java.library.path
requirements that
I will describe later.

The first two jar files

Copy the first two jar files from the above list
into your new folder named jars
.

As you will see later, this results in the need to execute the following command in order to
set the classpath whenever you compile or execute a Slick2D program:

-cp .;../jars/slick.jar;../jars/lwjgl.jar

The third jar file

The third file in the above list
applies to Windows only. If you are using a different system,
you should find a similar file in the Slick2D distribution that applies to your system. (For
example, the distribution contains files named natives-linux.jar and natives-mac.jar.)

Extract contents of the jar file

Using whatever program you can find to open a jar file (I use a program named WinZip)
,
extract the following files from the file named natives-windows.jar
:

jinput-dx8_64.dll
jinput-raw_64.dll
lwjgl64.dll
OpenAL64.dll

Copy these four files into your new folder named lwjglbin
.

As you will see later, this results in the need to execute the following command in order to
set the java.library.path
system property:

-Djava.library.path=../lwjgnbin



(These files can also be stored in the folder from which
the program is being run and this
will eliminate the
requirement to set the java.library.path if you prefer that approach.)

Create, compile, and execute your first Slick2D program

Create a source-code file

Use your text editor to create a text file named Slick0100a.java
and store it in the folder
named Slick0100a
.

(Be careful to ensure that the file has the correct extension, particularly if you create it with
Windows Notepad. An extension of .txt won't work.)

Carefully copy the code from Listing 1
into the text file. This is the file that you will
attempt to compile and run to confirm correct operation of your system.

(See Download source code
to download a folder named Slick0100a
already populated
with the code from Listing 1
.)

Listing 1
. Slick2D program named Slick0100a.java.

/*Slick0100a.java

Copyright 2012, R.G.Baldwin


A simple program that shows the method definitions 

required by the Slick framework.


Tested using JDK 1.7 under WinXP

*********************************************************/



import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.SlickException;



public class Slick0100a extends BasicGame{




Listing 1
. Slick2D program named Slick0100a.java.

 public Slick0100a(){

   //Call to superclass constructor is required.

   super("This title will be overridden later.");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   //Constructor for AppGameContainer requires parameter

   // of interface type Game. Hence, object of this class

   // must provide concrete definitions of the five

   // methods declared in the Game class. Two of those

   // methods are overridden in the BasicGame class. The

   // other three are not.

   AppGameContainer app = 

                      new AppGameContainer(new 

Slick0100a());

   app.start();//this statement is required

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   //Concrete override required.

   //Do any required initialization here.

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Concrete override required.

   //Put the game logic here.

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //Concrete override required.

   //Draw the current state of the game here.

 }//end render

 //----------------------------------------------------//




Listing 1
. Slick2D program named Slick0100a.java.

 public String getTitle(){

   //Concrete override is optional. Overridden in 

   // BasicGame class. When overridden here, overrides

   // the title provided in the constructor above.

   return "Optional title";

 }//end getTitle

 //----------------------------------------------------//

 

 public boolean closeRequested(){

   //Concrete override is optional. Overridden in 

   // BasicGame class.

   return false;

 }//end closeRequested


}//end class Slick0100a

Compile and run the program

Create a batch file

Use your text editor to create a text file named CompileAndRun.bat
and store it in the
folder named Slick0100a
.

(Once again, be careful to ensure that the file has the correct extension, particularly if you
create it with Windows Notepad. An extension of .txt won't work.)

Carefully copy the contents Listing 2
into the text file. This is the file that you will use in
your attempt to compile and run your source-code file named Slick0100a.java
. (Line
breaks or wrapped lines are not allowed. Make certain that your batch file has only seven
lines of text exclusive of blank lines.)

Listing 2
. The file named CompileAndRun.bat.



Listing 2
. The file named CompileAndRun.bat.

echo off

del *.class


rem refer to jar files in the folder named jars

javac -cp .;../jars/slick.jar;../jars/lwjgl.jar 
Slick0100a.java


rem set the java.library.path and the classpath and run 
the program

java -Djava.library.path=../lwjglbin -cp 
.;../jars/slick.jar;../jars/lwjgl.jar Slick0100a


pause

Execute the batch file

Double-click your new batch file named CompileAndRun.bat
(or execute it in whatever
manner you prefer.) This should cause two new windows to appear on your screen.

Slick2D output during startup

The first window to appear should look similar to Figure 1
.

Figure 1
. Output from Slick2D during program startup.



Figure 1
. Output from Slick2D during program startup.

Figure 1
shows information produced by Slick2D when a compiled Slick2D program starts
running.

A default Slick2D game window

The second window to appear should look something like Figure 2
.

Figure 2
. A default Slick2D game window.



Figure 2
. A default Slick2D game window.

Figure 2
is a default Slick2D game window. As you will learn in the next module, this
particular Slick2D program has no interesting behavior. In effect, it is an "empty" game
program. Therefore, the only thing showing in the game window is a counter in the top left
corner that shows the execution rate in frames per second.

Run the program

I encourage you to copy the code from Listing 1
and Listing 2
. Install the necessary
software on your computer as described above. Compile the code and execute it. If you
don't see results similar to those shown above, go back and review the instructions very
carefully.

Summary

I showed you how to install Slick2D in such a way that you can easily compile and execute
Slick2D programs from the command line with no need for a high level IDE.



What's next?

In the next module, I will use the code from Listing 1
to begin explaining the anatomy of a
basic Slick2D game engine.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0100: Getting started with the Slick2D game library.
File: Slick0100.htm
Published: 02/03/13
Revised: 06/06/15 for 64-bit

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Download source code

Click here
to download a zip file containing the source code for all of the sample programs
in this collection. The zip file also contains populated 64-bit versions of the folders named
jars and lwjglbin
to save you the trouble of downloading the distribution and populating
those folders.

https://cnx.org/content/m45726/


Extract the contents of the zip file into an empty folder. Each program should end up in a
separate folder. Double-click the file named CompileAndRun.bat
in each folder to compile
and run the program contained in that folder.

-end-



Slick0110: Overview
Learn about some of the characteristics of game engines and frameworks in general, and
how Slick2D fits those characteristics. Learn how to write a minimal Java application in
conjunction with a set of Slick2D jar files to create your own Slick2D game engine.

Table of Contents

Preface

Viewing tip

Figures
Listings

The bottom line at the top
Preview
What is a game engine?

A software framework

Background information
Discussion and sample code

A service provider program
Two primary objects

Behavior of an object of the AppGameContainer class
Behavior of an object that implements the Game interface

Beginning of the class named Slick0110a
The Game interface

Run the program
Summary
What's next?
Miscellaneous

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules will concentrate on the Java game library named Slick2D, the
concepts involved and the knowledge that you will gain is applicable to different game
engines written in different programming languages.



The purpose of this module is to teach you about some of the characteristics of game
engines in general, and to teach you how Slick2D fits those characteristics.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are
reading about them.

Figures

Figure 1
. Steps for writing a Slick2D game program.
Figure 2
. Output from Slick2D during program startup.
Figure 3
. A default Slick2D game window.
Figure 4
. Abstract methods declared in the Game interface.

Listings

Listing 1
. Simplest Slick2D program.
Listing 2
. The file named CompileAndRun.bat.
Listing 3
. Beginning of the class named Slick0110a.

The bottom line at the top

In order to write a game program using the Slick2D game library that will run as a Java
application, you must, as a minimum, perform the steps shown in Figure 1
.

Figure 1
. Steps for writing a Slick2D game program.



Figure 1
. Steps for writing a Slick2D game program.

1. Define a class containing a main method that will run 
as an application.


2. Define and instantiate an object from a class that 
implements Slick2D's 

  Game interface. (Can be combined with item 1 above.)

 


3. Instantiate an object of Slick2D's AppGameContainer 
class, passing the

  Game object's reference (from item 2 	 above) as 

a parameter to the

  AppGameContainer constructor.

  


4. Call the start method on the object of type 
AppGameContainer

 (from item 3 above).


Preview

The purpose of this module is to teach you about some of the characteristics of game
engines in general, and to teach you how Slick2D fits those characteristics.

What you have learned

In the previous module, you learned how to download Slick2D and how to install Slick2D
in such a way that you can easily compile and execute Slick2D programs from the
command line with no need for a high level IDE such as Eclipse or NetBeans.

What you will learn

To begin with, you will learn what we often mean when we speak of a "game engine."
You
will also learn how that terminology relates to something that we often refer to as a
"software framework."

You will learn how to write a minimal Java application in conjunction with a set of Slick2D
jar files to create your own Slick2D game engine. Using that program as an example, you
will learn about the overall structure of the Slick2D game engine.



You will learn that game engines are typically service provider
programs and you will learn
about a common set of services that is provided by many game engines.

You will learn about the two cooperating objects that form the heart of the Slick2D game
engine.

You will learn about the methods declared in the interface named Game
.

What is a game engine?

The term "game engine" is jargon for something that is more properly called a "software
framework."

A software framework

Here is part of what Wikipedia
has to say about a software framework:

A software framework
, in computer programming, is an abstraction in which common code
providing generic functionality
can be selectively overridden or specialized by user code
providing specific functionality
.

Frameworks are a special case of software libraries in that they are reusable abstractions of
code wrapped in a well-defined API, yet they contain some key distinguishing features that
separate them from normal libraries.

Software frameworks have these distinguishing features that separate them from libraries or
normal user applications
:

1. inversion of control
- In a framework, unlike in libraries or normal user applications,
the overall program's flow of control is not dictated by the caller, but by the
framework.

2. default behavior
- A framework has a default behavior. This default behavior must
actually be some useful behavior and not a series of no-ops.

3. extensibility
- A framework can be extended by the user by selective overriding of
framework code in order to provide specific functionality

4. non-modifiable framework code
- The framework code, in general should not
normally be modified by the user. Users can extend the framework, but normally
should not modify its code.

In short, a framework is a computer program that helps you to write computer programs.

Not a game engine

http://en.wikipedia.org/wiki/Software_framework


Under this definition, Slick2D in its raw form is not a game engine nor is it a framework.
Instead, it is a library of Java classes that you can use to create a framework or game
engine.

In particular, if you combine the contents of the files named slick.jar
and lwjgl.jar
with the
minimal Java application shown in Listing 1
and described in
Figure 1
, you will have
created a game engine. That combination is what I will refer to hereafter as the Slick2D
game engine
.

Having done that, the framework description given
above
is a good match for the Slick2D
game engine.

Background information

Listing 1
shows a very simple Java application program. This is possibly the simplest
program that can be written using Slick2D that will run as a Java application.

(A different approach is used to create a Slick2D program that will run as a Java applet,
but I probably won't get into Java applets in this collection of modules.)

I will use this program to explain the overall structure of the Slick2D game engine in this
module. I will explain the inner workings of the game engine in more detail in future
modules.

Listing 1
. Simplest Slick2D program.

/*Slick0110a.java

Copyright 2012, R.G.Baldwin


Possibly the simplest game that can be coded to use the

Slick2D game engine and run as a Java application.


Compile and run the program by executing the file named

CompileAndRun.bat.


Tested using JDK 1.7 under WinXP and Win 7

*********************************************************/




Listing 1
. Simplest Slick2D program.

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Game;


public class Slick0110a implements Game{


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app =

                  new AppGameContainer(new Slick0110a());

   app.start();//this statement is required

 }//end main

 //----------------------------------------------------//


 public void init(GameContainer gc)

                                 throws SlickException {

   //empty body

 }

 //----------------------------------------------------//


 public void update(GameContainer gc, int delta)

                                  throws SlickException{

   //empty body

 }

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                  throws SlickException{

   //empty body

 }

 //----------------------------------------------------//

 public String getTitle(){

   return "Optional title";

 }//end getTitle

 //----------------------------------------------------//


 public boolean closeRequested(){

   return false;

 }//end closeRequested


}//end class Slick0110a

//======================================================//



Listing 1
. Simplest Slick2D program.

A batch file named CompileAndRun

Listing 2
shows the contents of a batch file that you can use to compile and execute the
code in Listing 1
as was explained in an earlier module.

Listing 2
. The file named CompileAndRun.bat.

echo off

del *.class


rem refer to jar files in the folder named jars

javac -cp .;../jars/slick.jar;../jars/lwjgl.jar 
Slick0110a.java


rem set the java.library.path and the classpath and run 
the program

java -Djava.library.path=../lwjglbin -cp 
.;../jars/slick.jar;../jars/lwjgl.jar Slick0110a


pause

Execute the batch file

If you double-click the batch file named CompileAndRun.bat
(or execute it in whatever
manner you prefer), two new windows should appear on your computer screen.

Slick2D output during startup

The first window to appear should look similar to
Figure 2
.



Figure 2
. Output from Slick2D during program startup.Figure 2
. Output from Slick2D during program startup.

Figure 2
shows typical information produced by Slick2D when the compiled Slick2D
program starts running.

A default Slick2D game window

The second window to appear should look something like
Figure 3
.

Figure 3
. A default Slick2D game window.



Figure 3
. A default Slick2D game window.

Figure 3
is a default Slick2D game window. This Slick2D program (see Listing 1
)
has no
interesting behavior. In effect, it is an "empty" game program. Therefore, the only thing
showing in the game window is a counter in the top left corner that shows the execution
rate in frames per second. (I will show you how to control the execution rate in a future
module.)

The appearance of this empty game window matches the second item in the
above list
titled
default behavior
. In particular, the default behavior of the Slick2D game engine is to
display an empty game window with an active FPS counter in the upper-left corner..

Discussion and sample code

A service provider program

Many game engines, (and the Slick2D game engine is no exception)
, are
"service provider"
programs. They provide services that make it easier to write game programs than would



otherwise be the case if you were to "start from scratch"
to write a game program.

Different game engines provide different services. However, most game engines, including
Slick2D, provide at least a minimum set of services, which includes the following:

An opportunity to initialize the game state.
Overall flow control that includes a game loop, which alternates in some fashion
between

an update
phase, in which the game state is updated, and
a rendering
phase in which portions of the game state may be displayed for the
benefit of the player.

These services are provided in different ways in different game engines. You will learn how
they are provided by the Slick2D game engine in future modules.

Two primary objects

At a minimum, a Slick2D game that runs as an application (not an applet)
consists of at
least two cooperating objects
:

1. An object instantiated from a subclass of the Slick2D class named GameContainer
.
2. An object instantiated from a class that implements the Slick2D interface named

Game
.

(For the remainder of this and future modules, unless I specifically indicate that I am
discussing a Slick2D game applet, you can assume that I am talking about a Slick2D game
program that runs as an application.)

Behavior of an object of the AppGameContainer class

The GameContainer object (
item 1 above
)
, and the behavior of its methods, manages the
game play after the game program starts running. For example, this is the object that
manages the game loop.

For the program shown in Listing 1
, this object is an object of the class named
AppGameContainer
, which extends the class named GameContainer
.

The AppGameContainer
class provides many public methods by which you can
manipulate the behavior of the container object. However, the authors of the Slick2D
library did not intend for you to physically modify the source code in the GameContainer
class or the AppGameContainer
class.



Behavior of an object that implements the Game interface

The Game
object (
item 2 above
)
, and the behavior of its methods is what distinguishes
one Slick2D game from another Slick2D game. The authors of the Slick2D library did
intend for you to physically modify the source code in the class that implements the
Game
interface. This is how you distinguish your game from games written by others.

(Clarification: See a later discussion of a class named BasicGame
, which implements the
Game
interface. The authors of the Slick2D library did not intend for you to modify the
source code in the BasicGame
class. Instead, they intended for you to subclass that class
and to modify the behavior of the Game
object by overriding inherited abstract methods.)

Beginning of the class named Slick0110a

Consider the code fragment shown in Listing 3
. (This code was extracted from Listing 1
to
make it easier to discuss.)

Listing 3
. Beginning of the class named Slick0110a.

public class Slick0110a implements Game{


 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app =

                  new AppGameContainer(new 

Slick0110a());

   app.start();//this statement is required

 }//end main

Listing 3
shows the beginning of the class named Slick0110a
along with the entire main
method.

An object of the interface type Game



To begin with, note that the Slick0110a
class implements the interface named Game
.
Therefore, an object of this class satisfies the requirement for the second type of object
identified as item 2 in the
above list
. In other words, an object of this class is an object of
the interface type Game
.

An object of the AppGameContainer class

Now note the first statement in the main
method in Listing 3
that instantiates a new object
of the class named AppGameContainer
and saves that object's reference in the local
variable named app
. This object satisfies the requirement for the first type of primary
object identified as item 1 in the above list
. In other words, an object of this class is an
object of the type
GameContainer
because the class named AppGameContainer
is a
subclass of GameContainer
.

Tying the two objects together

The class named AppGameContainer
provides two overloaded constructors, each of
which requires an incoming parameter that is a reference to an object instantiated from a
class that implements the interface named Game
. The code in the main
method in Listing
3
uses the simpler of the two overloaded constructors to instantiate a new object of the class
named
AppGameContainer and to save its reference in the local variable named app
.

The code in Listing 3
also instantiates a new object of the class named Slick0110a
and
passes that object's reference to the constructor for the class named
AppGameContainer
.
This is legal because the class named Slick0110a
implements the interface named Game
.

At this point, the two objects described in the above list
exist and occupy memory. From
this point forward, the container
object knows about the game
object and has access to its
members.

Start the game program running

Finally, the last statement in the main
method calls the
start
method on the new container
object to cause the program to be initialized and to cause the game loop to start running.

The Game interface

One of the rules in Java programming is that whenever a new class definition inherits an
abstract method declaration, either the new class definition must provide a concrete
definition for the abstract method or the class itself must be declared abstract.

All of the methods declared in an interface are implicitly abstract. Therefore, whenever a
new class definition implements an interface that declares methods, it inherits one or more
abstract method declarations and the above rule applies.



What is a concrete method definition

Not much is required to provide a concrete method definition. All that is necessary to
define concrete methods that return void
is to replicate the signature of the abstract method
and to provide an empty body delineated by a pair of empty curly brackets. If the return
type for the abstract method is not void, the body of the concrete version must contain a
return
statement that matches the specified return type.

Five abstract methods

The interface named Game
declares the five abstract methods shown in Figure 4
:

Figure 4
. Abstract methods declared in the Game interface.



Figure 4
. Abstract methods declared in the Game interface.

Concrete versions of the inherited abstract methods

As you can see in Listing 1
, the new class named Slick0110a
is not declared abstract.
Therefore, it must provide concrete versions of the inherited abstract methods shown in
Figure 4
.

The init
, update
, and render
methods in Listing 1
return void and are defined with empty
bodies. The getTitle
and closeRequested
methods do not return void. Therefore each of

boolean closeRequested() - Notification that a game close 
has been requested

Returns: True if the game should close


String getTitle() - Get the title of this game

Returns: The title of the game



void init(GameContainer container) throws SlickException 
- Initialise the game.

This can be used to load static resources. It's called 

before the game loop starts

Parameters: container - The container holding the game



void render(GameContainer container, Graphics g) throws 
SlickException - Render the

game's screen here.

Parameters: container - The container holing this game, 

            g - The graphics context that can be used to 

render. However, 

            normal rendering routines can also be used.


void update(GameContainer container,int delta) throws 
SlickException - Update the

game logic here. No rendering should take place in this 

method though it won't 

do any harm.

Parameters: container - The container holding this game, 
            delta - The amount of time that has passed 

since last update 

            in milliseconds




these concrete versions contains a return
statement of the required type.

Not much fun to play

As you learned earlier, the skeleton code for this Slick2D game program shown in Listing 1
can be compiled and executed. However, it isn't very much fun to play because it doesn't do
anything other than to sit there and display the frames per second (FPS)
rate in the upper-
left corner of the game window. Make no mistake about it, however, the game loop is
running meaning that the game is active.

Not the recommended form

While this is probably the simplest Slick2D game program that can be written to run as a
Java application, it is not the recommended form for an empty Slick2D game skeleton. You
will learn in the next module that instead of implementing the Game
interface directly, it is
better to extend a Slick2D helper class named BasicGame
that implements the Game
interface and provides some additional services that may be useful to the game
programmer. However, even when you do that, it is still necessary to write code to put some
meat on the skeleton's bones to create a playable game.

Run the program

I encourage you to copy the code from Listing 1
and Listing 2
Compile the code and
execute it, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Summary

The main purpose of this module is to teach you about some of the characteristics of game
engines and frameworks in general, and to teach you how Slick2D fits those characteristics.

More specifically, you learned what we often mean when we speak of a "game engine."
You learned how that terminology relates to something that we often refer to as a "software
framework."

You learned how to write a minimal Java application in conjunction with a set of Slick2D
jar files to create your own Slick2D game engine. Using that program as an example, you
learned about the overall structure of the Slick2D game engine.

You learned that game engines are typically service provider
programs and you learned
about a common set of services that is provided by most game engines.

You learned about the two cooperating objects that form the heart of the Slick2D game
engine.



You learned about the methods declared in the interface named Game
.

You learned that in order to write a game program using the Slick2D game engine that will
run as a Java application, you must, as a minimum, perform the steps shown in Figure 1
.

What's next?

In the next module, I will begin explaining the purpose of the methods that are inherited
from the Game
interface and will begin showing how you can override those methods to
control the behavior of your Slick2D game program.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0110: Overview
File: Slick0110.htm
Published: 02/03/13
Revised 06/09/15 for 64-bit

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.



-end-



Slick0120: Starting your program
Learn how and why you should extend the BasicGame class instead of implementing the
Game interface directly. Learn about the behavior of the constructors for the
AppGameContainer class. Learn about the behavior of the setup and getDelta methods that
are called by the start method of the AppGameContainer class.

Table of Contents

Preface

Viewing tip

Listings

Preview
General background information
Discussion and sample code

Two primary objects

Behavior of an object of the AppGameContainer class
Behavior of an object that implements the Game interface

Starting the game
The constructors for the AppGameContainer class
The setup method of the AppGameContainer class
The getDelta method of the GameContainer class
The gameLoop method of the AppGameContainer class

Run the program
Summary
What's next?
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.



Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the listings while you are reading about
them.

Listings

Listing 1
. The main method.
Listing 2
. The start method of the AppGameContainer class.
Listing 3
. Constructor for the AppGameContainer class that takes a single parameter.
Listing 4
. Constructor for the AppGameContainer class that takes four parameters.
Listing 5
. The getDelta method of the GameContainer class.
Listing 6
. Source code for Slick0120a.java

Preview

The main purpose of this module is to analyze the behavior of the Slick2D game engine
when you start a Slick2D game running.

What you have learned

In previous modules, you learned how to download Slick2D and how to install Slick2D in
such a way that you can easily compile and execute Slick2D programs from the command
line with no need for a high level IDE such as Eclipse or NetBeans.

You also learned what we often mean when we speak of a "game engine"
and how that
terminology relates to a "software framework."

You learned how to write a minimal Java application in conjunction with a set of Slick2D
jar files to create your own Slick2D game engine. Using that program as an example, you
learned about the overall structure of the Slick2D game engine.

You learned that game engines are typically service provider
programs and you learned
about a common set of services that is provided by most game engines.

You learned about the two cooperating objects that form the heart of the Slick2D game
engine.

An object instantiated from a subclass of the Slick2D class named GameContainer
.
An object instantiated from a class that implements the Slick2D interface named
Game
.



And last but not least, you learned about the five abstract methods declared in the interface
named Game
:

boolean closeRequested()
String getTitle()
void init(GameContainer container)
void render(GameContainer container, Graphics g)
void update(GameContainer container, int delta)

What you will learn

You will learn how and why you should extend the BasicGame
class instead of
implementing the Game
interface directly.

You will learn about the constructors for the AppGameContainer
class.

You learned earlier that you need to call the start
method on an object of the
AppGameContainer
class to cause your Slick2D game program to start running. You will
learn that the start
method calls the following three methods:

setup
getDelta
gameLoop

You will learn about the behavior of the setup
and getDelta
methods in this module. An
explanation of the gameLoop
method will be deferred until the next module.

General background information

Listing 6
shows the skeleton code for a basic game class named Slick0120a
. This code
differs from the skeleton code presented in earlier modules in two important respects:

1. The class named Slick0120a
extends
the Slick2D class named BasicGame
instead of
extending Object
and implementing the Slick2D interface named Game
.

2. The class named Slick0120a
does not override
the methods named getTitle
and
closeRequested
. (They are overridden with default behavior in the BasicGame
class.)
Instead, it overrides only the following methods that are declared in the Slick2D
Game
interface:

1. init
2. update
3. render

The class named BasicGame



Regarding the first item
in the above list, while it is technically possible to write a Slick2D
game program by implementing the Game
interface directly, the Slick2D helper class
named BasicGame
implements the Game
interface and provides a number of useful
methods as well. Therefore, by extending the BasicGame
class, you not only implement
the
Game
interface, you also get the benefit of the methods that are defined in the
BasicGame
class.

The methods named init, update, and render

Note, however that the Basic
game class does not define concrete versions of the methods
named init
, update
, and render
. Therefore, you are still required to provide concrete
versions of those methods in your class that extends the BasicGame
class (or some
subclass of that class)
.

The class named Slick0120a
does provide concrete versions of methods as indicated in the
second item
in the above list.

The methods named getTitle and closeRequested

Further regarding the second item
in the above list, the class named BasicGame
does
provide concrete versions of the methods named getTitle
and closeRequested
. Therefore,
unless you need to provide different behavior for those two methods, you don't need to
override them in your new class that extends the BasicGame
class.

Discussion and sample code

Listing 1
shows the main
method for our new class named Slick0120a
.

Listing 1
. Listing 1
. The main method.



Listing 1
. Listing 1
. The main method.

 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app =

                  new AppGameContainer(new 

Slick0120a());

   app.start();//this statement is required

 }//end main

We will dissect this code to make certain that we understand what it means and why we
need it.

Two primary objects

You learned in an earlier module that a Slick2D game that runs as an application (not an
applet)
consists of at least two cooperating objects:

1. An object instantiated from a subclass of the Slick2D class
named
GameContainer
.

2. An object instantiated from a class that implements the Slick2D interface
named
Game
.

Behavior of an object of the AppGameContainer class

The GameContainer object (
item 1 above
)
manages the program startup and the game
play after the game program starts running. For example, this is the object that manages the
game loop.

As shown in Listing 1
, for the program named Slick0120a
, this object is an object of the
class named AppGameContainer
, which extends the class named GameContainer
.

The AppGameContainer
class provides many public methods (including the method
named start
, which is called in
Listing 1
)
by which you can manipulate the behavior of the
container object. The authors of the Slick2D library did not intend for you to physically
modify the source code in the GameContainer
class or the AppGameContainer
class.



Behavior of an object that implements the Game interface

The behaviors of the methods of the Game
object (
item 2 above
)
are what distinguishes
one Slick2D game from another Slick2D game.

You need not implement the Game
interface directly. The authors of the Slick2D library
provided a helper class named BasicGame
that implements the
Game
interface and
provides a number of useful methods. They intended for you to extend the BasicGame
class and to override at least three of the methods declared in the Game
interface in order
to provide the desired behavior for your game..

As mentioned earlier, the class named Slick0120a
extends the BasicGame
class, thereby
implementing the Game
interface and getting the benefit of methods defined in the
BasicGame
class.

The code in the main
method in Listing 1
instantiates an object of the Slick0120a
class and
passes that object's reference to the constructor for the class named AppGameContainer
.
Therefore,
Listing 1
instantiates both of the required objects and connects them in the
manner intended by the authors of the Slick2D library.

Starting the game

The main purpose of this module is to analyze the behavior of the Slick2D game engine
when you start a Slick2D game running.

Listing 1
calls the start
method on a reference to the AppGameContainer
object. The
source code for the start
method is shown in Listing 2
.

Listing 2
. The start method of the AppGameContainer class.



Listing 2
. The start method of the AppGameContainer class.

 public void start() throws SlickException {

   try {

     setup();

     

     getDelta();

     while (running()) {

       gameLoop();

     }

   } finally {

     destroy();

   }

   

   if (forceExit) {

     System.exit(0);

   }

 }//end start

Copyright and license information

Note:
Copyright and license information:
I was unable to find any copyright or license information in the zip file that I downloaded
from
http://slick.ninjacave.com/
. I acknowledge that I am not the author of the code in that
zip file and the copyrights for that material are held by someone other than myself.

Constructors and methods

This and the next few modules will explore and discuss the constructors for the
AppGameContainer
class (see
Listing 1
)
along with salient aspects of the following
methods that are called in Listing 2
:

setup
getDelta
gameLoop

http://slick.ninjacave.com/


The constructors for the AppGameContainer class

Listing 1
instantiates a new object of the AppGameContainer
class by calling a
constructor that takes a single parameter of the Slick2D interface type Game
.

The source code for that constructor is shown in Listing 3
.

Listing 3
. Constructor for the AppGameContainer class that takes a single
parameter.

 public AppGameContainer(Game game) throws 
SlickException {

   this(game,640,480,false);

 }//end constructor

A constructor with four parameters

The code in Listing 3
simply calls another overloaded version of the constructor passing
four default parameters that specify a game window of 640x480 pixels.

The constructor that takes four parameters is shown in Listing 4
.

Listing 4
. Constructor for the AppGameContainer class that takes four
parameters.



Listing 4
. Constructor for the AppGameContainer class that takes four
parameters.

 public AppGameContainer(Game game,

                         int width,

                         int height,

                         boolean fullscreen) 

                                  throws SlickException 

{

   super(game);

   

   originalDisplayMode = Display.getDisplayMode();

   

   setDisplayMode(width,height,fullscreen);

 }//end constructor

The first parameter is a reference to the game that is to be wrapped by the
GameContainer
object. The code in Listing 4
passes that reference to its superclass, GameContainer
,
where it is saved in a protected
variable of type Game
named game
. As a protected
variable, it is accessible to all of the methods of the AppGameContainer
class for use
later.

Then Listing 4
saves the current display mode in a variable named originalDisplayMode
,
presumably to be used later.

Finally, Listing 4
calls the method named setDisplayMode
to set the display mode to
match the incoming parameters.

(This is the constructor that you would use if you wanted to cause the size of the game
window to be something other than the default of 640 by 480 pixels.)

The setup method of the AppGameContainer class

The setup
method is fairly long and complicated. Most of the code in the method has to do
with the creation and formatting of the game window. I will skip over that code and leave it
as an exercise for interested students to analyze.

Initialization of the game



Finally a statement near the end of the setup
method calls a method named
init
on a
reference to the Game
object, passing a reference to the object of type
AppGameContainer
as a parameter.

This is what we would refer to as a callback that uses the reference to the
Game
object that
was passed to the constructor to call the method named init
on the Game
object.

The effect is to call the method named init
belonging to the game program shown in Listing
6
. This causes the initialization code (if any)
that you have written into the overridden init
method to be executed. If the overridden version of the method has an empty body (as in
Listing 6
)
, it simply returns without doing anything. This is how your game gets
initialized.

The getDelta method of the GameContainer class

The AppGameContainer
class inherits a protected
method named getDelta
from its
superclass named GameContainer
.

The getDelta
method is called from the start
method shown in Listing 2
.

What is delta?

An int
parameter named delta
is received by the update
method shown in Listing 6
.
(The
update
method s a concrete version of the method having the same signature that is
declared in the Game
interface.)

According to the documentation for the update
method in the
Game
interface, delta is

"The amount of time that has passed since last update in milliseconds"

Having that time available can be valuable in some game programs. For example, you
might like for one of the actors to light a fuse on a bomb and have that bomb detonate some
given number of milliseconds later. In that case, the program would need real time
information to know when to detonate the bomb.

Listing 5
shows the source code for the getDelta
method.

Listing 5
. The getDelta method of the GameContainer class.



Listing 5
. The getDelta method of the GameContainer class.

 protected int getDelta() {

   long time = getTime();

   int delta = (int) (time - lastFrame);

   lastFrame = time;

   

   return delta;

 }//end getDelta method

Without getting into the details, the method named getTime
that is called in Listing 5
returns the amount of time, (with a resolution of one millisecond)
, that has elapsed since a
historical point in time before the game started running.

The GameContainer
class contains a protected
instance variable of type long
named
lastFrame
that is used to store a time value.

The code in Listing 5

subtracts the time value stored in lastFrame
from the current time,
converts the time difference to type int
, saving it in
delta
, and
stores the current time in lastFrame
.

The difference between the two time values represents a time interval and that difference is
returned as type int
.

Various methods in the AppGameContainer
and GameContainer
classes call the
getDelta
method in such a way that the value of delta represents the time required to update
and render one frame when the program is running. (There are some other options as well
that I may discuss in a future module.)

When the method named update
is called in Listing 6
, the incoming parameter named
delta
contains the number of milliseconds that have elapsed since the last time that the
update
method was called.

When the method named getDelta
is called in
Listing 2
, the return value is discarded. This
suggests that the call to the getDelta
method in Listing 2
is made simply to cause the
variable named lastFrame
to be initialized with time that the start
method was called.

The gameLoop method of the AppGameContainer class



That leaves us with one more method call from Listing 2
that we need to examine --
gameLoop
. I anticipate that will be a fairly long discussion, so I am going to defer that
discussion until the next module.

Run the program

As explained earlier, the skeleton code in Listing 6
is different from the skeleton code that I
presented in earlier modules. Therefore, I encourage you to copy the code from Listing 6
.
Compile the code and execute it, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Summary

The main purpose of this module was to analyze the behavior of the Slick2D game engine
when you call the start
method to cause a Slick2D game program to start running.

You learned how and why you should extend the BasicGame
class instead of implementing
the Game
interface directly.

You learned about the behavior of the constructors for the AppGameContainer
class.

You learned that the start
method of the AppGameContainer
class calls the following
three methods:

setup
getDelta
gameLoop

You learned about the behavior of the setup
and getDelta
methods in this module.

What's next?

I will provide an explanation of the gameLoop
method in the next module.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0120: Starting your program
File: Slick0120.htm



Published: 02/04/13
Revised: 06/09/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

Listing 6
provides a complete listing for the skeleton program named Slick0120a
.

Listing 6
. Source code for Slick0120a.java.

/*Slick0120a.java

Copyright 2012, R.G.Baldwin


Skeleton code for a basic game.


Tested using JDK 1.7 under WinXP

*********************************************************/




Listing 6
. Source code for Slick0120a.java.

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.SlickException;


public class Slick0120a extends BasicGame{


 public Slick0120a(){

   //Call to superclass constructor is required.

   super("Slick0120a, Baldwin.");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app =

                  new AppGameContainer(new Slick0120a());

   app.start();//this statement is required

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   //No initialization needed for this program.

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Put game logic here

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //Put drawing code here.

 }//end render


}//end class Slick0120a



Listing 6
. Source code for Slick0120a.java.

-end-



Slick0130: The game loop
Learn how a game program written with the Slick game library creates and maintains a
game loop.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information

The property named running
The gameLoop method
The updateAndRender method

Calls to the update method
Calls to the render method

Overall structure of a game program

Discussion and sample code

The program named Slick0130a

The screen output
Beginning of the class named Slick0130a
The main method
The overridden init method
The overridden update method
The overridden render method
End of discussion

Run the program
Summary
What's next?
Miscellaneous
Complete program listing

Preface



This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are
reading about them.

Figures

Figure 1
. Screen output from program named Slick0130a.

Listings

Listing 1
. The start method of the AppGameContainer class.
Listing 2
. The gameLoop method of the AppGameContainer class.
Listing 3
. Beginning of the updateAndRender method of the GameContainer class.
Listing 4
. The remainder of the updateAndRender method of the GameContainer
class.
Listing 5
. Beginning of the class named Slick0130a.
Listing 6
. The main method.
Listing 7
. The overridden init method.
Listing 8
. The overridden update method.
Listing 9
. The overridden render method.
Listing 10
. Source code for the program named Slick0130a.

Preview

What you have learned

The main purpose of this and the previous module is to analyze the behavior of the Slick2D
game engine when you call the start
method to cause a Slick2D game program to start
running.

In the previous module, you learned how and why you should extend the BasicGame
class
instead of implementing the Game
interface directly.



You learned about the behavior of the constructors for the AppGameContainer
class.

You learned that the start
method of the AppGameContainer
class (see Listing 1
) calls
the following three methods:

setup
getDelta
gameLoop

You learned about the behavior of the setup
and getDelta
methods.

What you will learn

I will explain the overall behavior of the gameLoop
method in this module.

In addition, you will learn

about a property of the GameContainer
class named running
, and how it is used by
the start
method to keep the game loop running,
about the salient features of the gameLoop
method of the AppGameContainer
class,
about the updateAndRender
method of the GameContainer
class and how it decides
when and if to call the update
and render
methods of the object of the Game
class
that is wrapped in the container,
about the difference between normal delta and smoothed delta,
about minimumLogicInterval
and maximumLogicInterval and how the contents of
those two variables are used to determine if, when, and how many times to call the
update
method during each iteration of the game loop,
how the contents of minimumLogicInterval
and maximumLogicInterval
are used to
determine the value that is passed as delta each time the update
method is called,
that the render
method is normally called once and only once during each iteration of
the game loop,
how you can use the value of delta that is received by the update
method to control
the behavior of a game program,
that you can set the size of the game window when you instantiate an object of the
AppGameContainer
class by passing dimension parameters to the constructor,
that you can set the target frame rate by calling the setTargetFrameRate
method on
the GameContainer
object, and
how to display text in the game window.

General background information

As you learned in the previous module, the start
method (see Listing 1
) calls the setup
method and then calls the getDelta
method. Following that, it calls the gameLoop
method
as described below.



The property named running

The GameContainer
class declares a protected boolean
variable named running
, which
is inherited into the object of the AppGameContainer
class. The descriptive comment
reads "True if we're currently running the game loop."

The initial value of this variable is true and as near as I can tell, it only goes false

when the exit
method is called,
when the closeRequested
method is called and returns true, or
when some code in the game throws a SlickException
.

Calling the gameLoop method

The start
method in Listing 1
shows a call to the gameLoop
method inside a while
loop
with a call to the running
method as the conditional clause.

Listing 1
. The start method of the AppGameContainer class.

 public void start() throws SlickException {

   try {

     setup();

     

     getDelta();

     while (running()) {

       gameLoop();

     }

   } finally {

     destroy();

   }

   

   if (forceExit) {

     System.exit(0);

   }

 }//end start




As you can see in Listing 1
, the gameLoop
method is called repeatedly while the variable
named running
is true. Each time it returns, it is called again.

I will refer to each call to the gameLoop
method as one iteration of the game loop in the
discussion that follows.

The gameLoop method

The gameLoop
method of the AppGameContainer
class is shown in
Listing 2
.

Listing 2
. The gameLoop method of the AppGameContainer class.



Listing 2
. The gameLoop method of the AppGameContainer class.

 protected void gameLoop() throws SlickException {

   int delta = getDelta();

   if (!Display.isVisible() && updateOnlyOnVisible) {

     try { Thread.sleep(100); } catch (Exception e) {}

   } else {

     try {

       updateAndRender(delta);

     } catch (SlickException e) {

       Log.error(e);

       running = false;

       return;

     }//end catch

   }//end else


   updateFPS();


   Display.update();

   

   if (Display.isCloseRequested()) {

     if (game.closeRequested()) {

       running = false;

     }//end if

   }//end if

 }//end gameLoop method


A verbal description

This is my verbal description of what happens each time the start
method calls the
gameLoop
method.

First the gameLoop
method gets the value for delta (the elapsed time since the call to the
gameLoop method during the previous iteration of the game loop)
.

If the display (the game window)
is not visible and a property named
updateOnlyOnVisible
is true, the gameLoop
method takes appropriate action. I will leave
it as an exercise for interested students to analyze those actions. (The program goes to sleep
for 100 milliseconds.)



If the display is visible, the gameLoop
method calls the updateAndRender
method of the
GameContainer
class passing delta as a parameter. Upon return, the gameLoop
method
performs some housekeeping tasks and terminates.

The updateAndRender method

Listing 3
shows the beginning of the updateAndRender
method of the GameContainer
class.
This is the code that controls calls to the
update
method. The code that controls calls
to the render
method is shown in Listing 4
later.

Listing 3
. Beginning of the updateAndRender method of the GameContainer
class.

 protected void updateAndRender(int delta) 

                                  throws SlickException 

{

   if (smoothDeltas) {

     if (getFPS() != 0) {

       delta = 1000 / getFPS();

     }//end if

   }//end if

   

   input.poll(width, height);

   

   Music.poll(delta);

   if (!paused) {

     storedDelta += delta;

     

     if (storedDelta >= minimumLogicInterval) {

       try {

         if (maximumLogicInterval != 0) {

           long cycles = 

                      storedDelta / 

maximumLogicInterval;

           for (int i=0;i<cycles;i++) {

             game.update(this,

(int)maximumLogicInterval);




Listing 3
. Beginning of the updateAndRender method of the GameContainer
class.

           }//end for loop

           

           int remainder = 

                     (int)(delta % 

maximumLogicInterval);

           if (remainder > minimumLogicInterval) {

             game.update(

               this,(int)(delta % 

maximumLogicInterval));

             storedDelta = 0;

           } else {

             storedDelta = remainder;

           }//end else

         } else {

           game.update(this, (int) storedDelta);

           storedDelta = 0;

         }//end else

         

       } catch (Throwable e) {

         Log.error(e);

         throw new SlickException(

         "Game.update() failure - check the game 

code.");

       }//end catch

     }//end if on minimumLogicInterval

   } else {

     game.update(this, 0);

   }//end else


Another verbal description

This is my verbal description of what happens when the gameLoop
method calls the
updateAndRender
method.

(I will not discuss those actions that represent communication with the hardware via the
Lightweight Java Game Library (lwjgl) as well as a few other housekeeping actions)
.

The updateAndRender
method begins by selecting between normal delta and "smooth
deltas."



(Smooth delta values essentially represent a moving average of individual delta values
computed in a somewhat roundabout way.)

Calling the update and render methods

The update
method of the Game
object will be called none, one, or more times during each
iteration of the game loop on the basis of the contents of two variables named
minimumLogicInterval
and maximumLogicInterval
.

The default value for minimumLogicInterval
is 1. The default value for
maximumLogicInterval
is 0. Methods are provided by which you can change the values
of these two variables.

The render
method of the Game
object will be called only once during each iteration of
the game loop following the call or calls to the
update
method.

Calls to the update method

If the paused
property is true, the update
method is called once passing a value of zero for
delta. Otherwise, the value of
delta is added to the contents of a variable named
storedDelta
for the purpose of accumulating individual delta values.

Then the method enters a somewhat complex logic process, which I will describe as
follows:

If storedDelta
is less than minimumLogicInterval
, don't call update
during this
iteration of the game loop.
If storedDelta
is greater than or equal to minimumLogicInterval
and
maximumLogicInterval
has a value of 0, call the update
method once passing
storedDelta
as a parameter. Then set storedDelta
to zero to set the accumulated value
back to 0.
If storedDelta
is greater than minimumLogicInterval
and maximumLogicInterval
is not equal to zero, call the update
method several times in succession (if needed)
during this iteration of the game loop, passing a value for delta during each call that is
less than or equal to storedDelta
. Continue this process until the sum of the
delta
values passed in the method calls equals storedDelta
.

Possible outcomes

This algorithm results in the following possible outcomes regarding calls to the
update
method during each iteration of the game loop prior to calling the render
method:

1. No call at all
.
2. One call with a delta value of zero
.
3. One call with a non-zero value for delta
.



4. Multiple calls, each with a non-zero value for delta
.

Analysis of the outcomes

Item 1
represents a situation where you don't want to execute update
code for values of
delta that are below a certain threshold and you prefer to execute update
code less
frequently using accumulated values of delta instead.

Item 2
represents a situation where the paused
property has been set to true and no updates
should be performed. (This situation is indicated by a delta value of zero, which can be
tested by code in the update method.)

Item 3
represents a situation where you are willing to execute the code in the update
method once during each iteration of the game loop using the incoming value of
delta.

Item 4
represents a situation where you need to execute the code in the update
method two
or more times in succession during each iteration of the game loop with the total value of
delta being divided into smaller values.

Calls to the render method

The situation regarding calls to the render
method, as shown in
Listing 4
, is much less
complicated.

Listing 4
. The remainder of the updateAndRender method of the
GameContainer class.



Listing 4
. The remainder of the updateAndRender method of the
GameContainer class.

   if (hasFocus() || getAlwaysRender()) {

     if (clearEachFrame) {

       GL.glClear(SGL.GL_COLOR_BUFFER_BIT | 

                                

SGL.GL_DEPTH_BUFFER_BIT);

     }//end if

     

     GL.glLoadIdentity();

     

     graphics.resetFont();

     graphics.resetLineWidth();

     graphics.setAntiAlias(false);

     try {

       game.render(this, graphics);

     } catch (Throwable e) {

       Log.error(e);

       throw new SlickException(

         "Game.render() failure - check the game 

code.");

     }//end catch

     graphics.resetTransform();

     

     if (showFPS) {

       defaultFont.drawString(10,10,"FPS: 

"+recordedFPS);

     }//end if

     

     GL.flush();

   }//end if on hasFocus

   

   if (targetFPS != -1) {

     Display.sync(targetFPS);

   }//end if

 }//end method updateAndRender


One call per iteration of the game loop



Although there is some tedious housekeeping code in
Listing 4
, one call to the render
method is made during each iteration of the game loop provided that the game window has
the focus or a property named alwaysRender
is true.

(The default value for alwaysRender
is false, but a public method is provided to set its
value to true or false.)

Overall structure of a game program

Although the Slick2D library can be used in a variety of ways to create game programs, the
overall structure for one approach
looks something like the following.

Define a class with a main
method.
Cause the main
method to instantiate an object of the
BasicGame
class.
Cause the main
method to instantiate an object of the
AppGameContainer
class,
passing the BasicGame
object's reference as a parameter to the constructor for
AppGameContainer
.
Cause the main
method to call the start
method on the AppGameContainer
object.
Override the init
method inherited from the Basic
game class to initialize the state of
your game. This method will be called once by default before the game loop begins.
Override the update
method to update the state of your game during each iteration of
the game loop. Use the incoming value of delta for timing control. The update
method
will be called none, one, or more times during each iteration of the game loop as
described earlier.
Override the render
method to draw the state of your game in the game window once
during each iteration of the game loop.
Optionally override the inherited getTitle
and closeRequested
methods if needed.
Using the Slick2D javadocs
and the Java javadocs
(or a later version)
as a guide, write
code into your constructor, your main
method, and your overridden methods to tailor
the behavior of your game program to your liking.

Discussion and sample code

By now, you should have a pretty good understanding of the basics of writing a game
program using Slick2D using the approach described
above
.

Previous modules have presented skeleton code for writing such a program. In this module,
I will present and discuss a program that has a little more meat on that skeleton's bones to
illustrate a few more concepts. Future modules will dig much more deeply into the
capabilities provided by the Slick2D library.

The program named Slick0130a

http://slick.ninjacave.com/javadoc/
http://docs.oracle.com/javase/7/docs/api/index.html


Listing 10
provides a complete listing for the program named Slick0130a
. I will explain
the differences between this program and the skeleton programs presented in earlier
modules. Before getting into the code details, however, I will show you the output produced
by the program.

The screen output

Figure 1
shows a screen shot of the output in the game window while the program is
running.

Figure 1
. Screen output from program named Slick0130a.

The frame rate

The text in the upper-left corner of Figure 1
is the rate in frames per second that the game
loop is running. (Two frames per second in this case.)
This value is placed there by default.
The GameContainer
class provides a public method named setShowFPS
that you can call
whenever you have access to the AppGameContainer
object to disable or enable the
display of this information.

The reported value for FPS is always an integer. On my computer, it bounces back and
forth between 2 and 3 frames per second when this program is running.

The total elapsed time



The first line of text near the center of Figure 1
shows the computed value of the total
elapsed time in seconds since the game loop started running. As you will see later, this
value is computed by accumulating successive values of the incoming delta
parameter in
the update
method.

If you compile and run this program, you should see this value counting up in one-half
second increments, which is consistent with a frame rate of two frames per second.

The value of delta

The second line of text near the center of Figure 1
shows the value of delta received by the
most recent call to the update
method. On my computer, this value seems to range between
499 and 501 milliseconds, which is consistent with a frame rate of two frames per second.

Beginning of the class named Slick0130a

Listing 5
shows the beginning of the class named
Slick0130a
including the declaration of
some instance variables and the constructor.

Listing 5
. Beginning of the class named Slick0130a.

public class Slick0130a extends BasicGame{

 

 //Instance variables for use in computing and

 // displaying total time since program start and

 // time for each frame.

 double totalTime = 0;

 int incrementalTime = 0;


 public Slick0130a(){

   //Call to superclass constructor is required.

   super("Slick0130a, Baldwin.");

 }//end constructor


The instance variables that are declared in Listing 5
are used to compute and display the
values shown near the center of
Figure 1
.



The main method

Listing 6
shows the main
method for the program named Slick0130a
.

Listing 6
. The main method.

 public static void main(String[] args)

                                   throws 

SlickException{

   try{

     AppGameContainer app = (

                      new AppGameContainer(

                        new 

Slick0130a(),400,200,false));

     app.start();

   }catch(SlickException e){

     e.printStackTrace();

   }//end catch

 }//end main


A different constructor

Listing 6
calls a different overloaded constructor for the AppGameContainer
class than I
have used in earlier modules.

This version of the constructor allows for setting the width and height of the game window.
In this case, the game window is set to a width of 400 pixels and a height of 200 pixels as
shown in Figure 1
.

The last parameter to this constructor is described as a boolean
parameter that allows for
the selection of a full-screen game window. As of this writing, I have been unable to get
this to work. When I set the third parameter to true, I get a compiler error. However, I
haven't spent any time investigating what I might be doing wrong.

The overridden init method



The overridden init
method is shown in Listing 7
.

Listing 7
. The overridden init method.

 public void init(GameContainer gc)

                                  throws SlickException 

{

   //Set the frame rate in frames per second.

   gc.setTargetFrameRate(2);

   

 }//end init


Set the target frame rate

Listing 7
calls the setTargetFrameRate
on the GameContainer
object passing 2 as a
parameter. The description of this method in the
javadocs
is "Set the target fps we're hoping
to get,"

The overridden update method

Listing 8
shows the overridden update method.

Listing 8
. The overridden update method.

http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html#setTargetFrameRate%28int%29


Listing 8
. The overridden update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{

   //Compute and save total time since start in seconds.

   totalTime += delta/1000.0;

   

   //Save delta for display in render method.

   incrementalTime = delta;

   

 }//end update


Compute total elapsed time

Listing 8
converts the incoming value of delta in milliseconds into seconds and adds it to
the value stored in the instance variable named totalTime
that is declared in
Listing 5
. The
totalTime
value will be used to display the first line of text near the center of
Figure 1
.

Save the value of delta

Listing 8
saves the incoming value of delta in the instance variable named i
ncrementalTime
that was also declared in Listing 5
. The value stored in
incrementalTime will be used to display the second line of text near the center of Figure 1
.

The overridden render method

Listing 9
shows the overridden render
method.

Listing 9
. The overridden render method.



Listing 9
. The overridden render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   //Truncate totalTime to one decimal digit and

   // display

   double time = (int)(totalTime*10)/10.0;

   g.drawString("totalTime: "+time,100.0f,100.0f);

   

   //Display incremental time.

   g.drawString("incrementalTime: " + incrementalTime,

                100.0f,120.0f);

 }//end render


Truncate and draw the total time

Listing 9
begins by truncating the value of
totalTime
to only two decimal digits and saving
the truncated value in a local variable named time
. I will leave it as an exercise for the
student to analyze the code that I used to do that.

Then Listing 9
calls the drawString
method on the graphics context received as an
incoming parameter of type Graphics
to display the value in the first line of text near the
center of Figure 1
.

The drawString
method takes three parameters. The first is the string that is to be drawn in
the game window and the next two are the horizontal and vertical coordinates for the
location in which the string is to be drawn.

Draw the saved value of delta

Then Listing 9
calls the drawString
method again to draw the saved value of delta from
the most recent call to the
update
method as the second line of text near the center of
Figure 1
.

End of discussion

That concludes the discussion of the program named Slick0130a
. Although this is a simple
program, it should provide a little more insight into one approach
to creating a game
program using the Slick2D library.



Run the program

I encourage you to copy the code from Listing 10
. Compile the code and execute it,
making changes, and observing the results of your changes. Make certain that you can
explain why your changes behave as they do.

Summary

You learned about a property of the GameContainer
class named running
, and how it is
used by the start
method to keep the game loop running.

You learned about the salient features of the gameLoop
method of the
AppGameContainer
class.

You learned about the updateAndRender
method of the GameContainer
class and how it
decides when and if to call the update
and render
methods of the object of the Game
class
that is wrapped by the container.

You touched on the difference between normal delta and smoothed delta.

You learned about minimumLogicInterval
and maximumLogicInterval and how the
contents of those two variables are used to determine if, when, and how many times to call
the update
method during each iteration of the game loop. You also learned how the
contents of these two variables are used to determine the value that is passed as delta each
time the update method is called.

You learned that the render
method is normally called once and only once during each
iteration of the game loop.

You saw a simple example of how you can use the value of delta that is received by the
update
method to control the behavior of a game program.

You learned that you can set the size of the game window when you instantiate an object of
the AppGameContainer
class by passing dimension parameters to the constructor.

You learned that you can set the target frame rate by calling the setTargetFrameRate
method on the GameContainer
object.

You learned how to display text in the game window.

What's next?

In the next module, we will take a look at displaying images with transparency.

Miscellaneous



This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0130: The game loop
File: Slick0130.htm
Published: 02/04/13
Revised: 06/09/15 for 64-bit

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

Listing 10
provides a complete listing of the program named Slick0130a
.

Listing 10
. Source code for the program named Slick0130a.

/*Slick0130a.java




Listing 10
. Source code for the program named Slick0130a.

Copyright 2012, R.G.Baldwin


A very skinny Slick program. Barely more than a skeleton.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.SlickException;


public class Slick0130a extends BasicGame{

 

 //Instance variables for use in computing and

 // displaying total time since program start and

 // time for each frame.

 double totalTime = 0;

 int incrementalTime = 0;


 public Slick0130a(){

   //Call to superclass constructor is required.

   super("Slick0130a, Baldwin.");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   try{

     AppGameContainer app = (

                      new AppGameContainer(

                        new Slick0130a(),400,200,false));

     app.start();

   }catch(SlickException e){

     e.printStackTrace();

   }//end catch

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {




Listing 10
. Source code for the program named Slick0130a.

   //Set the frame rate in frames per second.

   gc.setTargetFrameRate(2);

   

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Compute and save total time since start in seconds.

   totalTime += delta/1000.0;

   

   //Save delta for display in render method.

   incrementalTime = delta;

   

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //Truncate totalTime to one decimal digit and

   // display

   double time = (int)(totalTime*10)/10.0;

   g.drawString("totalTime: "+time,100.0f,100.0f);

   

   //Display incremental time.

   g.drawString("incrementalTime: " + incrementalTime,

                100.0f,120.0f);

 }//end render


}//end class Slick0130a


-end-



Slick0140: A first look at Slick2D bitmap graphics
Learn how to draw a sprite image with transparent parts on a background image using two
different approaches.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code

Beginning of the class named Slick0140a
The main method
The overridden init method
An empty update method
The overridden render method

Run the program
Summary
What's next?
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to take a first look at bitmap graphics in Slick2D.

Viewing tip



I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are
reading about them.

Figures

Figure 1
. Background image in Windows Paint.
Figure 2
. Ladybug image in Windows Paint.
Figure 3
. Ladybug image in Windows Picture and Fax Viewer.
Figure 4
. Ladybug image in Gimp.
Figure 5
. Output from program Slick0140a.

Listings

Listing 1
. Beginning of the class named Slick0140a.
Listing 2
. The main method.
Listing 3
. The overridden init method.
Listing 4
. The overridden render method.
Listing 5
. Source code for the program named Slick0140a.

Preview

What you have learned

In the previous module, you learned about a property of the GameContainer
class named
running
, and how it is used by the start
method to keep the game loop running.

You learned about the salient features of the gameLoop
method of the
AppGameContainer
class.

You learned about the updateAndRender
method of the GameContainer
class and how it
decides when and if to call the update
and render
methods of the object of the Game
class
that is wrapped by the container.

You touched on the difference between normal delta
and smoothed delta
.

You learned about minimumLogicInterval
and maximumLogicInterval and how the
contents of those two variables are used to determine if, when, and how many times to call
the update
method during each iteration of the game loop. You also learned how the
contents of these two variables are used to determine the value that is passed as delta
each
time the update
method is called.



You learned that the render
method is normally called once and only once during each
iteration of the game loop.

You saw a simple example of how you can use the value of delta
that is received by the
update
method to control the behavior of a game program.

You learned that you can set the size of the game window when you instantiate an object of
the AppGameContainer
class by passing dimension parameters to the constructor.

You learned that you can set the target frame rate by calling the setTargetFrameRate
method on the GameContainer
object.

You learned how to display text in the game window.

What you will learn

In this module, you will learn that while there are many classes, interfaces, and methods in
the Slick2D library with names that match classes, interfaces, and methods in the standard
edition Java library, they are not the same.

You will learn how to set the drawing mode so that bitmap images drawn in the game
window will either honor or not honor transparent pixels.

You will learn how to draw bitmap images in the game window using both the
draw
methods of the Image
class and the drawImage
methods of the Graphics
class.

General background information

Bitmaps and shapes

Many game programs communicate primarily with the player using interactive graphics.
Sometimes those graphics involve drawing bitmap images. Both the Slick2D Image
class
and the Slick2D Graphics
class provide methods for drawing bitmap images.

Sometimes game programs involve drawing shapes such as circles, rectangles, polygons,
arcs, etc. The Slick2D Graphics
class and other classes such as the Slick2D Shape
class
provide methods for creating and drawing such shapes and filling closed shapes with color.

And of course, some game programs involve a combination of the two.

This module concentrates on drawing bitmap images both honoring and not honoring
transparent pixels.

Common class names



The Slick2D library contains numerous classes, interfaces, and methods with names that
match the names in the Java standard edition library, such as Color
, Graphics
, Image
,
Line
, Rectangle
, Shape
, Transform
, TextField
, etc.

You need to be aware, however, that even though the names are the same, and the behaviors
may be similar, these are not standard Java classes. Their behaviors will often be different
from standard Java classes. Therefore, ready access to the documentation at
http://slick.ninjacave.com/javadoc/
while you are programming in Slick2D is very
important even if you are a seasoned Java programmer.

Illustrate major differences

The program that I will present in this module will illustrate some of the major differences
between the two libraries insofar as graphics programming is concerned. For example, both
libraries have a class named Image
, which has generally the same purpose in both
libraries. However, the Image
class in the Slick2D library provides about ten different
overloaded draw
methods that you can call to draw images in the game window.

The Image
class in the Java standard library doesn't have any draw methods. Instead, it is
necessary to get a graphics context on the image and then call the drawImage
method on
that context to draw the image.

Draw bitmap images two different ways

The Slick2D render
method receives an incoming parameter of type
Graphics
, which also
provides a
drawImage
method that can be used to draw an image in the game window.

I will show you how to draw bitmap images using the draw
methods of the Image
class
and also show you how to draw bitmap images using the drawImage
methods of the
Graphics
class.

Discussion and sample code

Listing 5
provides a complete listing of a Slick2D program named Slick0140a
. Before
getting into the details of the code, however, I will show you the input and output images.

Input images

This program uses two input images. An image file named background.jpg
is used to
create a background in the game window. Figure 1
shows what that image looks like when
viewed in the Windows Paint
program.

http://slick.ninjacave.com/javadoc/


Figure 1
. Background image in Windows Paint.

The ladybug image

The second input image is a file named ladybug.png
, which is a picture of a red and black
ladybug on a transparent black background. Figure 2
shows this image when viewed in the
Windows Paint
program.

Figure 2
. Ladybug image in Windows Paint.



Figure 2
. Ladybug image in Windows Paint.

Figure 3
shows the same ladybug image when viewed in the Windows Picture and Fax
Viewer
program. Note that the black background from
Figure 2
is transparent in Figure 3
.

Figure 3
. Ladybug image in Windows Picture and Fax Viewer.



Figure 3
. Ladybug image in Windows Picture and Fax Viewer.

Figure 4
shows the same ladybug image when viewed in the Gimp
image editor program.
This program provides even a different treatment for the transparent pixels.

Figure 4
. Ladybug image in Gimp.

The output image

Figure 5
shows a screen shot of the game window while the program is running



Figure 5
. Output from program Slick0140a.

Different drawing parameters

The same ladybug image is drawn three times in Figure 5
with different drawing
parameters.

The leftmost image of the ladybug in Figure 5
is drawn with a scale factor of 0.75 and a
drawing mode that honors transparency:
MODE_NORMAL.

The center image of the ladybug in Figure 5
is drawn using a different approach with a
scale factor of 1.0 and a drawing mode that honors transparency: MODE_NORMAL.

The rightmost image of the ladybug in Figure 4
is drawn using the same approach as the
leftmost image, a scale factor of 1.25, and a drawing mode that does not honor
transparency: MODE_ALPHA_BLEND.

Are the mode names reversed?

As mentioned above, the two images of the ladybug with transparency were drawn using a
Slick2D constant named MODE_NORMAL
.

The image of the ladybug on the right without transparency was drawn using a Slick2D
constant named MODE_ALPHA_BLEND
.

These names seem to have been reversed. I would expect the constant with a name that
includes the words alpha
and
blend
to honor transparency but that doesn't seem to be the



case.

Beginning of the class named Slick0140a

Listing 1
shows the beginning of the class named
Slick0140a
including some instance
variable declarations and the constructor.

Listing 1
. Beginning of the class named Slick0140a.

public class Slick0140a extends BasicGame{


 Image ladybug = null;

 Image background = null;


 float leftX = 100;//leftmost position of ladybug

 float leftY = 100;

 

 float middleX = 200;//middle position of ladybug

 float middleY = 50;

 

 float rightX = 300;//rightmost position of ladybug

 float rightY = 100;

 

 

 float leftScale = 0.75f;//drawing scale factors

 float rightScale = 1.25f;

 //---------------------------------------------------

-//


 public Slick0140a(){//constructor

   //Set the title

   super("Slick0140a, baldwin");

 }//end constructor


The instance variables shown in Listing 1
and the values that they contain will be used later
to display the three ladybug images shown in Figure 5
.



There is nothing new in the constructor in Listing 1
.

The main method

There is also nothing new in the main
method in Listing 2
.

Listing 2
. The main method.

public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new 

Slick0140a(),414,307,false);

   app.start();

 }//end main


The overridden init method

The overridden init
method is shown in Listing 3
. There is quite a bit of new material in
Listing 3
.

Listing 3
. The overridden init method.



Listing 3
. The overridden init method.

public void init(GameContainer gc)

                                  throws SlickException 

{

   ladybug = new Image("ladybug.png");

   background = new Image("background.jpg");

   

   gc.setShowFPS(false);//disable FPS display


   gc.setTargetFrameRate(60);//set frame rate

 }//end init


Two new Image objects

Listing 3
begins by instantiating two new Slick2D Image
objects from the image files
discussed earlier and saving those object's references in two of the instance variables that
were declared in Listing 1
.

(Note that in this case, the image files were located in the same folder as the source code
for the program. Therefore, a path specification to the image files was not needed.)

I will remind you again that the Slick2D Image
class is different from the Image
class in
the standard edition Java library.

Don't display FPS

You may have noticed that the FPS display is missing from the upper-left corner of Figure 5
. That is because it was disabled by the call to the setShowFPS
method in Listing 3
,
passing false as a parameter to the method.

Set the target frame rate

The last statement in Listing 3
sets the target frame rate to 60 frames per second.

An empty update method

The update
method in Listing 5
is empty so there is no point in showing it here.

The overridden render method



The overridden render
method is shown in Listing 4
.

Listing 4
. The overridden render method.

public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   //Note that the names of the drawMode constants seem

   // to be backwards.

   

   //Draw the background and two versions of the 

   // ladybug by calling a draw method of the Image

   // class.

   g.setDrawMode(g.MODE_NORMAL);//honors transparency

   background.draw(0,0);

   ladybug.draw(leftX,leftY,leftScale);


   g.setDrawMode(g.MODE_ALPHA_BLEND);//no transparency

   ladybug.draw(rightX,rightY,rightScale);

   

   //Draw a third version of the ladybug by calling

   // a drawImage method of the Graphics class.

   g.setDrawMode(g.MODE_NORMAL);

   g.drawImage(ladybug,middleX,middleY);

 }//end render


Draw the background and the leftmost ladybug

Listing 4
begins by calling the setDrawMode
method on the incoming Graphics
parameter
to set the drawing mode to MODE_NORMAL as described earlier. Then it calls one of the
overloaded draw
methods of the background Image
object and the ladybug Image
object
to draw the background and the leftmost ladybug in Figure 5
.

Note that the drawing coordinates and the scale factor are passed to the draw
method.

Also note that this drawing of the ladybug image honors transparent pixels.

Draw the rightmost ladybug



After that, Listing 4
calls the setDrawMode
method on the incoming Graphics
parameter
to set the drawing mode to MODE_ALPHA_BLEND and calls the same draw
method of
the ladybug Image
object to draw the rightmost ladybug in Figure 5
.

Note that this drawing of the ladybug image does not honor transparent pixels.

Call the drawImage method of the Graphics class

Finally, Listing 4
calls the setDrawMode
method on the incoming Graphics
parameter to
set the drawing mode back to MODE_NORMAL and then calls the drawImage
method on
the incoming Graphics
parameter to draw the middle ladybug in Figure 5
. (This approach
is similar to the approach that would be used to draw an image using the standard edition
Java library.)

Note that the reference to the ladybug Image
object and the drawing coordinates are passed
as parameters to the drawImage
method. Some of the overloaded drawImage
methods
provide scaling. However, there is no scale parameter for this version of the drawImage
method so the ladybug was drawn at actual size.

Many overloaded drawing methods

There are many overloaded versions of the draw
and the drawImage
methods.

That completes the discussion of the program named Slick0140a
.

Run the program

I encourage you to copy the code from Listing 5
Compile the code and execute it, making
changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

Summary

You learned that while there are many classes, interfaces, and methods in the Slick2D
library with names that match classes, interfaces, and methods in the standard edition Java
library, they are not the same.

You learned that you can access the Slick2D documentation at
http://slick.ninjacave.com/javadoc/
. (A copy of the documentation is also included in the
distribution zip file.)

You learned how to set the drawing mode so that bitmap images drawn in the game window
will either honor or not honor transparent pixels.

http://slick.ninjacave.com/javadoc/


You learned how to draw bitmap images in the game window using both the draw
methods
of the
Image
class and the drawImage
methods of the
Graphics
class.

What's next?

In the next module, you will learn how to make sprites move at a constant speed in front of
an image in the face of a widely varying frame rate. You will also learn about a rudimentary
form of collision detection.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0140: A first look at Slick2D bitmap graphics
File: Slick0140.htm
Published: 02/04/13
Revised: 06/09/15 for 64-bit

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
:: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing



Listing 5
contains a complete listing of the program named Slick0140a
.

Listing 5
. Source code for the program named Slick0140a.

/*Slick0140a.java

Copyright 2012, R.G.Baldwin


Illustrates drawing a sprite image with transparent 

parts on a background image using two different 

approaches.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;


public class Slick0140a extends BasicGame{


 Image ladybug = null;

 Image background = null;

 float leftX = 100;//leftmost position of ladybug

 float leftY = 100;

 

 float middleX = 200;//middle position of ladybug

 float middleY = 50;

 

 float rightX = 300;//rightmost position of ladybug

 float rightY = 100;

 

 

 float leftScale = 0.75f;//drawing scale factors

 float rightScale = 1.25f;

 //----------------------------------------------------//




Listing 5
. Source code for the program named Slick0140a.

 public Slick0140a(){//constructor

   //Set the title

   super("Slick0140a, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0140a(),414,307,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   ladybug = new Image("ladybug.png");

   background = new Image("background.jpg");

   gc.setShowFPS(false);//disable FPS display

   gc.setTargetFrameRate(60);//set frame rate

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //No updates required in this program.

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //Note that the names of the drawMode constants seem

   // to be backwards.

   

   //Draw the background and two versions of the 

   // ladybug by calling a draw method of the Image

   // class.

   g.setDrawMode(g.MODE_NORMAL);//honors transparency

   background.draw(0,0);

   ladybug.draw(leftX,leftY,leftScale);




Listing 5
. Source code for the program named Slick0140a.

   g.setDrawMode(g.MODE_ALPHA_BLEND);//no transparency

   ladybug.draw(rightX,rightY,rightScale);

   

   //Draw a third version of the ladybug by calling

   // a drawImage method of the Graphics class.

   g.setDrawMode(g.MODE_NORMAL);

   g.drawImage(ladybug,middleX,middleY);

 }//end render


}//end class Slick0140a

-end-



Slick0150: A first look at sprite motion, collision detection, and timing control
Learn to make sprites move at a constant speed in front of an image in the face of a widely
varying frame rate. Also learn about a rudimentary form of collision detection.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code

A program with a relatively constant frame rate - Slick0150a

The screen output for Slick0150a
Beginning of the class named Slick0150a
The constructor and the main method
The init method
The update method
The render method

A program with a highly variable frame rate Slick0150b

The screen output for Slick0150b
The render method
The update method

Run the programs
Summary
What's next?
Miscellaneous
Complete program listings

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to



different game engines written in different programming languages as well.

The purpose of this module is teach you how to make sprites move at a constant speed in
front of an image in the face of a widely varying frame rate. You will also learn about a
rudimentary form of collision detection.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are
reading about them.

Figures

Figure 1
. Image of a ladybug.
Figure 2
. Background image.
Figure 3
. Screen shot of the program named Slick0150a.
Figure 4
. Screen shot of the program named Slick0150b.
Figure 5
. Screen shot of the program named Slick0150b without correction for
varying frame rate.

Listings

Listing 1
. Beginning of the class named Slick0150a.
Listing 2
. The init method for Slick0150a.
Listing 3
. Beginning of the update method for Slick0150a.
Listing 4
. Detection of collision with right edge.
Listing 5
. Test for collisions on other three sides of game window.
Listing 6
. The render method for Slick150a.
Listing 7
. The render method for Slick150b.
Listing 8
. Beginning of the update method for Slick0150b.
Listing 9
. Source code for the program named Slick0150a.
Listing 10
. Source code for the program named Slick0150b.

Preview

What you have learned

In the previous module, you learned that while there are many classes and interfaces in the
Slick2D library with names that match the names of classes and interfaces in the standard
edition Java library, they are not the same.



You learned that you can access the Slick2D documentation at
http://slick.ninjacave.com/javadoc/
. (A copy of the documentation is also included in the
distribution zip file.)

You learned how to set the drawing mode so that bitmap images drawn in the game window
will either honor or not honor transparent pixels.

You learned how to draw bitmap images in the game window using both the
draw
methods
of the Image
class and the
drawImage
methods of the Graphics
class.

What you will learn

In this module, you will learn how to make sprites move at a constant speed in front of an
image in the face of widely varying frame rates. You will also learn about a rudimentary
form of collision detection.

General background information

The update and render methods

Following initialization, the Slick2D game engine switches back and forth between an
update
method and a render
method.

We write code to control the state of the game in the update
method. We write code to
display the state of the game in the render
method.

A sprite

According to one definition, a sprite is a computer graphic that may be moved on-screen
and otherwise manipulated as a single entity.

We will use the image of the ladybug shown in Figure 1
as a sprite in two different
programs that I will explain in this module.

Figure 1
. Image of a ladybug.

http://slick.ninjacave.com/javadoc/


Figure 1
. Image of a ladybug.

We will cause that sprite to move in front of the background image shown in
Figure 2
.

Figure 2
. Background image.

A bouncing sprite

In particular, we will cause the sprite to bounce around inside the game window like a pool
ball on a pool table. Whenever it strikes an edge of the game window, it will bounce off in
the opposite direction. This process will continue until the program is terminated.



The target frame rate

As you learned in an earlier module, a GameContainer
method named
setTargetFrameRate
can be called in an attempt to cause the program to run at a constant
frame rate.

This method can slow the frame rate down to the target value on fast computers. However,
it cannot speed the frame rate up to the target value on slower computers.

Therefore, a call to the setTargetFrameRate
method should actually be viewed as setting
the maximum frame rate that the program will run.

An appearance of achieving the target frame rate

Sometimes it is important to cause the program to give the appearance of running at the
target frame rate even if it is actually running slower.

One example is when a sprite is moving across the game window. It is often desirable to
cause the sprite to move at the same overall speed regardless of the speed of the computer.
For example, you probably wouldn't want a missile to take a long time to reach its target on
a slow computer and a short time to reach its target on a fast computer.

Accuracy versus graphic quality

I will explain a program in this module that is designed to achieve such a result. The upside
is that you can often achieve the appearance of the target frame rate in terms of the overall
speed of the sprite. The downside is that the motion of the sprite may be less smooth than
would be the case if the computer were actually running at the target frame rate.

The parameter named delta

Each time the
update
method is called, it receives an incoming parameter named delta
whose value is the number of milliseconds that have elapsed since the most recent call to
the update
method. In the case of a highly varying frame rate, such as may occur when the
render
method is required to draw a complex and constantly changing scene, the value of
delta may vary significantly from one call to the next of the
update
method.

Fortunately, the value of delta can often be used to give the appearance of running at the
target frame rate even though the actual frame rate may be below the target. I will show you
how to do that in this module.

Discussion and sample code

A program with a relatively constant frame rate - Slick0150a



I will begin by discussing a case with a relatively constant frame rate. The program for this
case, Slick0150a
, is shown in Listing 9
.

The screen output for Slick0150a

Before getting into the coding details, I will show you some output.
Figure 3
shows a
screen shot of the game window while the program is running.

Figure 3
. Screen shot of the program named Slick0150a.

The screen shot in Figure 3
caught the ladybug in mid flight. As mentioned earlier, the next
time it collides with one of the edges of the game window, it will bounce off and move in
the opposite direction like a pool ball striking the cushion on the edge of a pool table.

The FPS output

As you learned in an earlier module, the text in the upper-left corner is the frame rate in
frames per second computed and automatically displayed by the game engine. You will see
later that a target frame rate of 60 frames per second was requested by calling the method
named
setTargetFrameRate
and passing 60 as a parameter.



At 60 frames per second, a time interval of 16.6666 milliseconds would be required to
complete each frame. It appears that the
setTargetFrameRate
method truncates this value
to an integer value of 16 milliseconds, which represents a frame rate of 62.5 frames per
second. It also appears that the code that displays the frame rate converts the actual frame
rate to an integer for display. Hence you see an FPS value of 62 in Figure 3
.

The traversalTime output

The traversalTime
output that you see in Figure 3
is computed and displayed by the
program that we will examine shortly. This is the time required for the sprite to complete
one round trip from the right edge to the left edge and back to the right edge.

If you compile and run this program, you will see that the traversalTime
value is
reasonably stable at around 3015 milliseconds.

The theoretical traversalTime

Although it isn't shown here, a separate output on the command-line window reported the
width of the background image to be 414 pixels and the width of the sprite to be 48 pixels.
The sprite is never allowed to go outside the boundaries of the game window, so the one-
way distance from the left edge to the right edge is 366 pixels. (This is the distance that the
upper-left corner of the sprite travels during the one-way trip.)
The round-trip distance is
twice that, or 732 pixels.

You will see later that the sprite is caused to move horizontally by four pixels during each
frame. At 62 frames per second, this represents a horizontal speed for the sprite of 248
pixels per second. At that speed, the sprite should complete the round trip in 2952
milliseconds. That is close enough to the typical reported time of 3015 milliseconds to
validate the theoretical considerations.

Relatively smooth motion

When I compile and run this program, I see the sprite moving with a relatively smooth
motion. Unless your computer is very slow, you should probably see the same thing.

Beginning of the class named Slick0150a

Listing 1
shows the beginning of the class definition for the class named Slick0150a
.



Listing 1
. Beginning of the class named Slick0150a.Listing 1
. Beginning of the class named Slick0150a.

public class Slick0150a extends BasicGame{

 

 Image bug = null;

 Image background = null;

 

 float backgroundWidth;

 float backgroundHeight;

 

 float bugX = 100;

 float bugY = 100;

 float bugWidth;

 float bugHeight;

 

 float bugXDirection = 1.0f;//initial direction to right

 float bugYDirection = 1.0f;//initial direction is down

 

 float xStep = 4.0f;//horizontal step size

 float yStep = 3.0f;//vertical step size

 

 float bugScale = 0.75f;//drawing scale factor

 

 //Used to compute and display the time required for the

 // bug to make each round trip across the game window

 // and back.

 long oldTime = 0;

 long traversalTime = 0;

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;


Listing 1
consists entirely of instance variable declarations. The purpose of each of these
variables should become clear as they are used later in the code. No explanation beyond the
embedded comments should be needed at this point.

The constructor and the main method



There is nothing new in the constructor and the main
method. You can view them both in
Listing 9
.

The init method

The init
method is shown in Listing 2
. I will explain the new material in this method.

Listing 2
. The init method for Slick0150a.

 public void init(GameContainer gc)

                                  throws SlickException 

{

   oldTime = gc.getTime();


   bug = new Image("ladybug.png");

   background = new Image("background.jpg");

   

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();

   

   bugWidth = bug.getWidth()*bugScale;

   bugHeight = bug.getHeight()*bugScale;

   

   System.out.println(

                  "backgroundWidth: " + 

backgroundWidth);

   System.out.println(

                "backgroundHeight: " + 

backgroundHeight);

   System.out.println("bugWidth: " + bugWidth);

   System.out.println("bugHeight: " + bugHeight);

   

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init


Get the time



The GameContainer
class provides a method named getTime
, which is described simply
as:

"Get the accurate system time."

I am interpreting this to mean that the method will return the system time good to one
millisecond relative to a well-defined time origin.

(Standard Java uses January 1, 1970 as the origin or epoch of time but Slick2D may use a
different origin. Since we will be working with changes in time and not absolute time, the
time origin doesn't matter.)

The init
method in Listing 2
calls the getTime
method to get and save the time in an
instance variable named oldTime
. The values in this variable will be used later to compute
the round-trip time required for the sprite to move across the game window and back to the
starting point at the right edge of the window.

Create the images

Listing 2
creates the ladybug Image
object and the background Image
object using code
that you have seen before, and stores those object's references in the instance variables
named bug
and background
.

Get, save, and display the widths and heights of the images

Then Listing 2
calls accessor methods to get, save, and display the widths and the heights
of the bug
and background
objects.

Set the target frame rate

Finally, Listing 2
calls the setTargetFrameRate
method to set the target frame rate to 60
frames per second.

The update method

The overridden update
method begins in Listing 3
.

The code in Listing 3
uses a very simple approach to cause the sprite to exhibit motion.

Listing 3
. Beginning of the update method for Slick0150a.



Listing 3
. Beginning of the update method for Slick0150a.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{

   //Compute new location for the sprite.

   bugX += bugXDirection*xStep;

   bugY += bugYDirection*yStep;


Compute new sprite locations

Each time the update
method is called, Listing 3
computes new location coordinate values
for the sprite, which are either increased or decreased by the values stored in xStep
and
yStep
.

Repetitive displays of the sprite in the new locations by the render
method produces the
impression that the sprite is moving.

Step values are independent of the frame rate

The step values are multiplied by the contents of direction variables in Listing 3
, each of
which contains either +1 or -1, and the products are added to the current location
coordinates.

As you will see shortly, the algebraic signs of the direction variables are changed each time
the sprite collides with an edge of the game window.

This code assumes a constant frame rate
and does not correct for variations in the frame
rate.
In other words, the size of the step taken during each frame is the same regardless of
how long it takes to complete a frame. If the computer is running below the target frame
rate, the sprite will appear to move more slowly than would be the case if the computer is
running at the target frame rate.

Collision detection

The code in Listing 4
begins by detecting a collision of the right edge of the sprite with the
right edge of the game window and reverses the sprite's direction of motion when a
collision occurs.

Note that if the rightmost portion of the sprite actually tries to move beyond the right edge
of the game window, it is stopped at the edge of the game window.



Listing 4
. Detection of collision with right edge.

   if(bugX+bugWidth >= backgroundWidth){

     //A collision has occurred.

     bugXDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the width

     // of the sprite.

     bugX = backgroundWidth - bugWidth;

     

     //Compute traversal time for the bug to make one

     // round trip across the game window and back.

     long currentTime = gc.getTime();

     traversalTime = currentTime - oldTime;

     oldTime = currentTime;

   }//end if

   


Compute and save the traversal time

Then the code in Listing 4
computes the elapsed time since the previous collision of the
sprite with the right edge of the game window and saves that time interval in the variable
named traversalTime
. That traversalTime
value will be displayed when the render
method is called producing the output shown in
Figure 3
.

Test for collisions on other three sides of game window

Listing 5
tests for collisions between the sprite and the other three sides of the game
window and takes appropriate action when a collision occurs. The code in these tests is less
complex than in
Listing 4
because they don't need to compute the
traversalTime
.

Listing 5
. Test for collisions on other three sides of game window.



Listing 5
. Test for collisions on other three sides of game window.

   //Continue testing for collisions with the edges.

   if(bugX <= 0){

     bugXDirection = 1.0f;

     bugX = 0;

   }//end if

   

   if(bugY+bugHeight >= backgroundHeight){

     bugYDirection = -1.0f;

     bugY = backgroundHeight - bugHeight;

   }//end if

   

   if(bugY <= 0){

     bugYDirection = 1.0f;

     bugY = 0;

   }//end if

   

 }//end update


The render method

The render method is shown in its entirety in Listing 6
.

Listing 6
. The render method for Slick150a.



Listing 6
. The render method for Slick150a.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   

   //Draw the background to erase the previous picture.

   background.draw(0,0);

   

   //Draw the bug in its new location.

   bug.draw(bugX,bugY,bugScale);

   

   //Display the traversal time computed in the update

   // method.

   g.drawString(

               "traversalTime: 

"+traversalTime,100f,10f);


 }//end render


There is really nothing new in Listing 6
. Therefore, it shouldn't require an explanation
beyond the embedded comments.

Each time this method is called, the location of the sprite will have changed by a few pixels
relative to its previous location. Displaying the sprite in a new location each time the
picture is drawn produces the impression that the sprite is moving.

A program with a highly variable frame rate - Slick0150b

This program differs from the previous program in that it attempts to maintain a constant
overall speed as the bug moves across the game window despite the fact that the
instantaneous frame rate varies quite a bit from one frame to the next. To accomplish this,
the step size is made to vary in proportion to the delta value received by the update
method, or inversely with the instantaneous frame rate.

A complete listing of the program is provided in Listing 10
near the end of the module.
Most of the code in this program is the same as code in the previous program, so I will
explain only the code that differs between the two.



The screen output for Slick0150b

Figure 4
shows a screen shot of the game window while this program is running. I will have
more to say about this output later after I explain some of differences between this program
and the program named Slick0150a
.

Figure 4
. Screen shot of the program named Slick0150b.

The render method

The significant differences between the two programs occur in the update
method and the
render
method. I will begin with an explanation of the render
method, which purposely
creates an issue that is resolved by code in the update
method.

The render
method is shown in its entirety in Listing 7
.



Listing 7
. The render method for Slick150b.Listing 7
. The render method for Slick150b.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);//honors transparency


   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw the bug in its new location.

   bug.draw(bugX,bugY,bugScale);


   //Display the traversal time computed in the update

   // method.

   g.drawString(

               "traversalTime: 

"+traversalTime,100f,10f);


   //Purposely insert a time delay.

   int sleepTime = (((byte)random.nextInt()) + 128)/6;

   gc.sleep(sleepTime);


 }//end render

Purposely insert a time delay

Everything down to the last two lines of code in Listing 7
is the same as the program named
Slick0150a
. At that point I inserted code that will cause an additional random time delay
ranging from 0 to 43 milliseconds before the render
method returns. I did this to simulate a
situation in which the rendering process is very complex and the time to render varies quite
a lot from one frame to the next.

A new average frame rate

In this case, the average additional delay time should be about 21.5 msec. This makes it
impossible to maintain the target frame rate of 60 frames per second or 16.666 milliseconds
per frame.

This additional delay should result in an average frame rate of about 46 or 47 frames per
second, which is consistent with the screen output shown in
Figure 4
.



A wide variation in delta values

Not only does this code result in a reduction in the average frame rate, it also results in a
wide variation in the values of delta received by the update
method on a frame to frame
basis.

As before, the init
method calls the setTargetFrameRate
method requesting a frame rate
of 60 frames per second. This guarantees that the minimum delta that will be received by
the update
method will be in the neighborhood of 16 milliseconds. (The game loop won't
be allowed to run any faster than 60 frames per second.)

The last two lines of code in Listing 7
will cause the value of delta to be as large as about
43 milliseconds.

Therefore, the incoming delta values in the update
method will vary between about 16
milliseconds and about 43 milliseconds on a totally random basis from one frame to the
next.

The update method

Listing 8
shows the code in the update
method that is different from the code in the update
method for the program named Slick0150b
.

Listing 8
. Beginning of the update method for Slick0150b.



Listing 8
. Beginning of the update method for Slick0150b.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{

   //Compute new location for the sprite.

   bugX += bugXDirection*xStep*delta*targetFPS/1000.0;

   bugY += bugYDirection*yStep*delta*targetFPS/1000.0;


   //The following code does not correct for variations

   // in delta. The step size is always the same

   // regardless of delta. Enable this code and disable

   // the two statements above to see the effect.


//    bugX += bugXDirection*xStep;

//    bugY += bugYDirection*yStep;


Compute new location for the sprite

As before, the method begins by computing a new location for the sprite. However, the
code in Listing 8
attempts to maintain a constant
overall speed as the bug moves across the
game
window despite the fact that the value of delta varies quite a bit from one frame to the
next.

Vary the step size

In order to accomplish this, the step
size is caused to vary in proportion to delta or inversely
with the instantaneous frame rate. Given the earlier estimate that the value of delta can vary
from about 16 milliseconds to about 43 milliseconds, the step size can vary from about 4
pixels per frame to about 10 pixels per frame. When the value of delta is small, the step size
will be small. When the value of delta is large, the step size will be large.

Maintaining a constant overall speed of motion

As a result of the long time delays introduced into the render
method, the average frame
rate has been slowed down to around 47 frames per second as shown in Figure 4
. However,
as also shown in Figure 4
, the traversal time continues to be close to the target of around
3000 milliseconds. Therefore, the algorithm is deemed to be successful in maintaining a
relatively constant overall speed of motion.

The visible output

This algorithm and the widely varying values of delta result in sprite motion that isn't as
smooth as with the program named Slick0150b
. However, the sprite gets to where it needs



to be when it needs to be there despite widely varying values of delta, and that is the
objective of the algorithm.

Results without correction for varying frame rate

The last two statements in Listing 8
show an alternative approach that does not attempt to
correct for variations in the value of delta.

(This approach is essentially the same as was used in the program named Slick0150a
above.)

When the first two statements in Listing 8
are disabled and the last two statements in
Listing 8
are enabled, the output is as shown in Figure 5
.

Figure 5
. Screen shot of the program named Slick0150b without correction for
varying frame rate.

Increased traversal time

Figure 5
shows the output of a system where the value of delta varies widely but no
correction is made for those variations. As you can see, the frame rate is reduced as in
Figure 4
. As you can also see, the traversal time is increased significantly from around



3000 milliseconds to around 4300 milliseconds. As a result, the sprite does not
get to where
it needs to be when it needs to be there.

Run the programs

I encourage you to copy the code from Listing 9
and Listing 10
. Compile the code and
execute it, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Summary

In this module, you learned how to make sprites move at a constant speed in front of an
image in the face of a widely varying frame rate. You also learned about a rudimentary
form of collision detection.

What's next?

In the next module, you will learn about using the draw
, drawCentered
, and drawFlash
methods of the
Image
class.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0150: A first look at sprite motion, collision detection, and timing
control
File: Slick0150.htm
Published: 02/04/13
Revised: 06/09/15 for 64-bit

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Image.html


In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listings

Listing 9
and Listing 10
provide complete listings of the programs discussed in this
module.

Listing 9
. Source code for the program named Slick0150a.

/*Slick0150a.java

Copyright 2012, R.G.Baldwin


Cause a ladybug sprite to bounce around inside the game

window.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;


public class Slick0150a extends BasicGame{

 

 Image bug = null;

 Image background = null;




Listing 9
. Source code for the program named Slick0150a.

 

 float backgroundWidth;

 float backgroundHeight;

 

 float bugX = 100;

 float bugY = 100;

 float bugWidth;

 float bugHeight;

 

 float bugXDirection = 1.0f;//initial direction to right

 float bugYDirection = 1.0f;//initial direction is down

 

 float xStep = 4.0f;//horizontal step size

 float yStep = 3.0f;//vertical step size

 

 float bugScale = 0.75f;//drawing scale factor

 

 //Used to compute and display the time required for the

 // bug to make each round trip across the game window

 // and back.

 long oldTime = 0;

 long traversalTime = 0;

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //----------------------------------------------------//


 public Slick0150a(){//constructor

   //Set the title

   super("Slick0150a, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0150a(),414,307,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override




Listing 9
. Source code for the program named Slick0150a.

 public void init(GameContainer gc)

                                  throws SlickException {

   oldTime = gc.getTime();


   bug = new Image("ladybug.png");

   background = new Image("background.jpg");

   

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();

   

   bugWidth = bug.getWidth()*bugScale;

   bugHeight = bug.getHeight()*bugScale;

   

   System.out.println(

                  "backgroundWidth: " + backgroundWidth);

   System.out.println(

                "backgroundHeight: " + backgroundHeight);

   System.out.println("bugWidth: " + bugWidth);

   System.out.println("bugHeight: " + bugHeight);

   

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Compute new location for the sprite.

   

   //The following code assumes a constant frame rate

   // and does not correct for variations in delta.

   // The step size is always the same regardless of

   // delta (how often the steps are taken).

   bugX += bugXDirection*xStep;

   bugY += bugYDirection*yStep;

   

   //Test for collisions with the sides of the game

   // window and reverse direction when a collision

   // occurs.

   if(bugX+bugWidth >= backgroundWidth){

     //A collision has occurred.

     bugXDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the width




Listing 9
. Source code for the program named Slick0150a.

     // of the sprite.

     bugX = backgroundWidth - bugWidth;

     

     //Compute traversal time for the bug to make one

     // round trip across the game window and back.

     long currentTime = gc.getTime();

     traversalTime = currentTime - oldTime;

     oldTime = currentTime;

   }//end if

   

   //Continue testing for collisions with the edges.

   if(bugX <= 0){

     bugXDirection = 1.0f;

     bugX = 0;

   }//end if

   

   if(bugY+bugHeight >= backgroundHeight){

     bugYDirection = -1.0f;

     bugY = backgroundHeight - bugHeight;

   }//end if

   

   if(bugY <= 0){

     bugYDirection = 1.0f;

     bugY = 0;

   }//end if

   

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   

   //Draw the background to erase the previous picture.

   background.draw(0,0);

   

   //Draw the bug in its new location.

   bug.draw(bugX,bugY,bugScale);

   

   //Display the traversal time computed in the update

   // method.

   g.drawString(




Listing 9
. Source code for the program named Slick0150a.

               "traversalTime: "+traversalTime,100f,10f);


 }//end render


}//end class Slick0150a


.

Listing 10
. Source code for the program named Slick0150b.

/*Slick0150b.java

Copyright 2012, R.G.Baldwin


Cause a ladybug sprite to bounce around inside the game

window.


A random time delay is inserted in the render method to

simulate a situation where the rendering process is very

complex and the time to render varies from one frame to

the next.


The program attempts to maintain a constant physical

speed as the bug moves across the game window despite

the fact that the delta varies quite a bit from one

frame to the next. The step size varies in proportion

to delta or inversely with frame rate.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;




Listing 10
. Source code for the program named Slick0150b.

import org.newdawn.slick.SlickException;

import java.util.Random;


public class Slick0150b extends BasicGame{

 Random random = new Random();


 Image bug = null;

 Image background = null;


 float backgroundWidth;

 float backgroundHeight;


 float bugX = 100;//initial position of ladybug

 float bugY = 100;

 float bugWidth;

 float bugHeight;


 float bugXDirection = 1.0f;//initial direction to right

 float bugYDirection = 1.0f;//initial direction is down


 float xStep = 4.0f;//horizontal step size

 float yStep = 3.0f;//vertical step size


 float bugScale = 0.75f;//drawing scale factor


 //Used to compute and display the time required for the

 // bug to make each round trip across the game window

 // and back.

 long oldTime = 0;

 long traversalTime = 0;


 //Frame rate we will simulate in terms of the speed of

 // the sprite and maximum frame rate we will allow.

 // We will use this value to achieve a constant overall

 // speed of motion for the sprite regardless of the

 // actual frame rate.

 int targetFPS = 60;

 //----------------------------------------------------//


 public Slick0150b(){//constructor

   //Set the title

   super("Slick0150b, baldwin");

 }//end constructor




Listing 10
. Source code for the program named Slick0150b.

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0150b(),414,307,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   oldTime = gc.getTime();


   bug = new Image("ladybug.png");

   background = new Image("background.jpg");


   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();


   bugWidth = bug.getWidth()*bugScale;

   bugHeight = bug.getHeight()*bugScale;


   System.out.println(

                  "backgroundWidth: " + backgroundWidth);

   System.out.println(

                "backgroundHeight: " + backgroundHeight);

   System.out.println("bugWidth: " + bugWidth);

   System.out.println("bugHeight: " + bugHeight);


   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Compute new location for the sprite.


   //The following code attempts to maintain a constant

   // overall speed as the bug moves across the game

   // window despite the fact that the delta varies




Listing 10
. Source code for the program named Slick0150b.

   // quite a bit from one frame to the next. The step

   // size varies in proportion to delta or inversely

   // with the frame rate.

   bugX += bugXDirection*xStep*delta*targetFPS/1000.0;

   bugY += bugYDirection*yStep*delta*targetFPS/1000.0;


   //The following code does not correct for variations

   // in delta. The step size is always the same

   // regardless of delta. Enable this code and disable

   // the two statements above to see the effect.


//    bugX += bugXDirection*xStep;

//    bugY += bugYDirection*yStep;


   //Test for collisions with the sides of the game

   // window and reverse direction when a collision

   // occurs.

   if(bugX+bugWidth >= backgroundWidth){

     //A collision has occurred.

     bugXDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the width

     // of the sprite.

     bugX = backgroundWidth - bugWidth;


     //Compute traversal time for the bug to make one

     // round trip across the game window and back.

     long currentTime = gc.getTime();

     traversalTime = currentTime - oldTime;

     oldTime = currentTime;

   }//end if


   //Continue testing for collisions with the edges.

   if(bugX <= 0){

     bugXDirection = 1.0f;

     bugX = 0;

   }//end if


   if(bugY+bugHeight >= backgroundHeight){

     bugYDirection = -1.0f;

     bugY = backgroundHeight - bugHeight;

   }//end if


   if(bugY <= 0){

     bugYDirection = 1.0f;




Listing 10
. Source code for the program named Slick0150b.

     bugY = 0;

   }//end if


 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);//honors transparency


   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw the bug in its new location.

   bug.draw(bugX,bugY,bugScale);


   //Display the traversal time computed in the update

   // method.

   g.drawString(

               "traversalTime: "+traversalTime,100f,10f);


   //Insert an additional random time delay ranging from

   // 0 to 43 msec to simulate a situation where the

   // rendering process is very complex and the time

   // to render varies quite a lot from one frame to

   // the next. The average delay time should be about

   // 21.5 msec, which should result in an average FPS of

   // about 46 or 47 FPS reduced by the additional time

   // that would be required to complete a frame in the

   // absence of this time delay.

   int sleepTime = (((byte)random.nextInt()) + 128)/6;

   gc.sleep(sleepTime);


 }//end render


}//end class Slick0150b


-end-



Slick0160: Using the draw and drawFlash methods.
Learn about using the draw, drawCentered, and drawFlash methods of the Image class.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code

The program named Slick0160a

Beginning of the Slick0160a class
The main method
The init method
The update method
The render method

The program named Slick0160b

Beginning of the class named Slick0160b
The update method
The render method

Run the programs
Summary
What's next?
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.



An earlier module titled A first look at Slick2D bitmap graphics
introduced you to the use
of bitmap graphics in Slick2D. The purpose of this module is dig a little deeper into the use
of bitmap graphics

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. Output from the program named Slick0160a.
Figure 2
. One output from the program named Slick0160b.
Figure 3
. Another output from the program named Slick0160b.

Listings

Listing 1
. Beginning of the Slick0160a class.
Listing 2
. The main method.
Listing 3
. The init method.
Listing 4
. The render method.
Listing 5
. Draw the top four images.
Listing 6
. Draw three more images.
Listing 7
. Draw image based on its center.
Listing 8
. Draw a flipped copy.
Listing 9
. Beginning of the Slick0160b class.
Listing 10
. The update method.
Listing 11
. Beginning of the render method.
Listing 12
. The large flashing spider.
Listing 13
. Source code for Slick0160a.java.
Listing 14
. Source code for Slick0160b.java.

Preview

Bitmap graphics are used in a variety of ways in game and simulation programming.
Therefore, I will present and explain two programs that dig more deeply into the use of
bitmap graphics in Slick2D.

The program named Slick0160a

http://cnx.org/contents/ec409a1f-e946-486a-a681-980d0effa996/Slick0140-A-first-look-at-Slic


The first program named Slick0160a
calls the draw
method of the Image
class several
times in succession to
illustrate some of the options available with the draw
method. This
program also illustrates flipping an image. The output from this program is shown in Figure
1
.

Figure 1
. Output from the program named Slick0160a.

The program named Slick0160b

The second program named Slick0160b
illustrates the use of the drawFlash
method to
draw an image in
silhouette and to cause the silhouette to switch
back and forth between
two or more colors. The program draws several spiders in silhouette. It causes a large spider



to flash back and forth between a white silhouette and a blue silhouette. A screen shot of
the output from the program while the large spider is in its white state is shown in
Figure 2
.

Figure 2
. One output from the program named Slick0160b.

A screen shot of the output from the program while the large spider is in its blue state is
shown in Figure 3
.

Figure 3
. Another output from the program named Slick0160b.



Figure 3
. Another output from the program named Slick0160b.

What you have learned

In the previous module, you learned how to make sprites move at a constant speed in front
of an image in the face of widely varying frame rates. You also learned about a rudimentary
form of collision detection.

What you will learn

In this module, you will learn about using the draw
, drawCentered
, and drawFlash
methods of the
Image
class.

General background information

The Slick2D Image
class defines about ten overloaded versions of the draw
method. We
will investigate several of them in this module.

The class also defines three overloaded versions of the drawFlash
method along with a
method named drawCentered
. We will also investigate some of them.

Discussion and sample code

The program named Slick0160a

Beginning of the Slick0160a class

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Image.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/Image.html


Will discuss in fragments

A complete listing of this program is provided in Listing 13
. As is my custom, I will break
this program down and discuss it in fragments.

Listing 1
shows the beginning of the class down through the constructor.

Listing 1
. Beginning of the Slick0160a class.

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Slick0160a extends BasicGame{

 

 Image rabbit = null;

 

 float rabbitWidth;

 float rabbitHeight;


 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //---------------------------------------------------

-//


 public Slick0160a(){//constructor

   //Set the title

   super("Slick0160a, baldwin");

 }//end constructor

 //---------------------------------------------------

-//




As usual, it is necessary to declare several import directives that point to classes in the
Slick2D library. Also, as in several previous modules, the new class extends the Slick2D
class named BasicGame
.

Listing 1
declares several instance variables, initializing some of them.

The constructor simply sets the title on the game window.

The main method

The main
method is shown in Listing 2
. There is nothing in Listing 2
that you haven't seen
in several previous modules.

Listing 2
. The main method.

 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new 

Slick0160a(),512,537,false);

   app.start();

 }//end main


The init method

The init
method is shown in Listing 3
.

There is nothing in Listing 3
that you haven't seen in previous modules.



Listing 3
. The init method.Listing 3
. The init method.

 @Override

 public void init(GameContainer gc)

                                  throws SlickException 

{


   rabbit = new Image("rabbit.png");


   rabbitWidth = rabbit.getWidth();

   rabbitHeight = rabbit.getHeight();

 

   System.out.println(

                  "rabbitWidth: " + rabbitWidth);

   System.out.println(

                "rabbitHeight: " + rabbitHeight);


   gc.setShowFPS(false) ;

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init


The update method

The body of the update
method is empty so it isn't shown here. You can view it in Listing
13
.

The render method

The interesting code in this program is in the render
method, which begins in Listing 4
.
There is nothing in
Listing 4
that you haven't seen before.

Listing 4
. The render method.



Listing 4
. The render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.white);

   


Draw top four images

The code in Listing 5
calls four different overloaded versions of the draw
method on the
rabbit image to draw the top four images in Figure 1
.

Listing 5
. Draw the top four images.

   rabbit.draw(0f,0f);

   rabbit.draw(133f,0f,new Color(1.0f,0.0f,1.0f));

   rabbit.draw(266f,0f,0.5f);

   rabbit.draw(335f,0f,128f,192);


Draw unchanged at the origin

The first call to the draw
method in Listing 5
simply draws the image unchanged with its
upper-left corner at the upper-left corner (the origin)
of the game window.

Apply a color filter before drawing

The second call to the draw
method in Listing 5
applies a color filter to the rabbit image
and draws it with its upper-left corner at 133,0.

I haven't found an explanation as to exactly how the color filter is applied. It appears from
experimentation that the pixel color values in the original image are multiplied by the red,



green, and blue color values (expressed in the range from 0 to 1.0)
in the color object that is
passed as a parameter to the method. However, the Image
class defines two constants
named FILTER_LINEAR
and FILTER_NEAREST
that may have something to do with
how color filtering is applied.

Apply a uniform scale factor before drawing

The third call to the draw
method in
Listing 5
applies a scale factor of 0.5 to both
dimensions of the rabbit image and draws it with its upper-left corner at 266,0.

Change the dimensions before drawing

The fourth call to the draw
method in Listing 5
resizes the rabbit image to a width of 128
pixels and a height of 192 pixels and draws the modified image with its upper-left corner at
335,0.

Draw three more images

The code in Listing 6
calls three different overloaded versions of the draw
method on the
rabbit image to draw the two images on the center left and the large image on the bottom
left of
Figure 1
.

Listing 6
. Draw three more images.

   rabbit.draw(0f,133f);

   rabbit.draw(133f,133f,32f,32f,96f,96f);

   rabbit.draw(0f,266f,256f,532f,32f,32f,96f,96f,new 

Color(1.0f,1.0f,0.0f));

Draw another unchanged version

The first call to the draw
method in
Listing 6
simply draws another unchanged version of
the rabbit image in a new location, 0,133.

Extract and draw a rectangular section

The second call to the draw
method in Listing 6
extracts a rectangular section from the
original image and draws it the same size as the original image with its upper-left corner at



133,133.

The third and fourth parameters (32,32)
specify the coordinates of the upper-left corner of
the rectangle that is extracted. The fifth and sixth parameters
(96,96) specify the
coordinates of the lower-right corner of the rectangle that is extracted.

Extract and draw another rectangular section with color filtering

The third call to the draw
method in Listing 6
extracts a rectangular section from the
original image and draws it with a different size and also applies a color filter. I will leave it
as an exercise for the student to go to the Slick2D
documentation
for an explanation of the
eight parameters of type float
.

Draw image based on its center

The previous examples have drawn the image in a location based on its upper-left corner.
The statement in Listing 7
draws the image on the center right in Figure 1
. However,
instead of positioning the image based on its upper-left corner, the image is drawn with its
center located at 399,266.

Listing 7
. Draw image based on its center.

   rabbit.drawCentered(399f,266f);


Draw a flipped copy

The code in Listing 8
makes a call to the
getFlippedCopy
method of the Image
class,
followed by a call to the draw
method to draw the image in the bottom-right of Figure 1
.
Note that the rabbit is facing the opposite direction in that image. The boolean
parameters
specify whether the image is to be flipped on the horizontal, vertical, or both axes. In this
case, a value of true caused the image to be flipped on the horizontal axis only.

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Image.html


Listing 8
. Draw a flipped copy.Listing 8
. Draw a flipped copy.

   Image tempImage = rabbit.getFlippedCopy(true,false);

   tempImage.draw(266f,399f);


 }//end render


}//end class Slick0160a


Listing 8
also signals the end of the render
method and the end of the class named
Slick0160a
.

The Slick2D Image
class provides many additional capabilities that are not illustrated in
this program. I will leave it as an exercise for the student to explore them. However, there is
one other set of three overloaded methods named drawFlash
that I will illustrate in this
module. That is the topic of the next section.

The program named Slick0160b

Beginning of the class named Slick0160b

A complete listing of this program is provided in Listing 14
. As before, I will break this
program down and discuss it in fragments.

Listing 9
shows the beginning of the class named Slick0160b
down through the init
method.

Listing 9
. Listing 9, Beginning of the Slick0160b class.

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;




Listing 9
. Listing 9, Beginning of the Slick0160b class.

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Slick0160b extends BasicGame{

 

 Image spider = null;

 

 float spiderWidth;

 float spiderHeight;

 

 Color silohetteColor = Color.white;

 long timeAccumulator = 0;

 long flashInterval = 128;


 //Target frame rate 

 int targetFPS = 60;

 //---------------------------------------------------

-//


 public Slick0160b(){//constructor

   //Set the title

   super("Slick0160b, baldwin");

 }//end constructor

 //---------------------------------------------------

-//


 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new 

Slick0160b(),384,240,false);

   app.start();

 }//end main

 //---------------------------------------------------

-//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException 

{




Listing 9
. Listing 9, Beginning of the Slick0160b class.

   spider = new Image("spider.png");


   spiderWidth = spider.getWidth();

   spiderHeight = spider.getHeight();

 

   System.out.println("spiderWidth: " + spiderWidth);

   System.out.println("spiderHeight: " + spiderHeight);


   gc.setShowFPS(false) ;

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init


There is nothing new or unusual about the code in Listing 9
. Therefore, no explanation
beyond the embedded comments should be needed. You might want to note the instance
variables at the beginning of the class. They will be used in the code that I will describe
later.

The update method

Unlike the previous program, which simply displayed what appeared to be static images,
this program causes one of the images to change as the program runs. These changes are
programmed into the update
method, which is shown in Listing 10
.

Listing 10
. The update method.



Listing 10
. The update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{

   timeAccumulator += delta;

   if(timeAccumulator >= flashInterval){

     //Reset accumulator and change color of spider

     // silhouette 

     timeAccumulator = 0;

     if(silohetteColor.equals(Color.white)){

       silohetteColor = Color.blue;

     }else{

       silohetteColor = Color.white;

     }//end if

   }//end if

 }//end update


Switch color between white and blue

Recall that (by default)
the update
method is executed once during each iteration of the
game loop. (Other programming options are available regarding if, when, and how many
times the update
method is executed during one iteration of the game loop.)

The purpose of the update
method is to execute the program logic.

In this case, the program logic is simple; to switch the color of the large spider in Figure 2
between white and blue on a regular schedule.

As you will see in the render
method later, the color of the large spider is determined by
the value of the instance variable named silohetteColor
, which is initialized to white in
Listing 9
. Recall that the target frame rate is set to 60 frames per second in Listing 9
. A
variable named flashInterval
is initialized to 128 in
Listing 9
.

Also recall that the value of the incoming parameter named delta
is the number of
milliseconds
since the last time that the update method was called. This value was used in a
significant way in the earlier module titled A first look at sprite motion, collision detection,
and timing control
.

The program logic

http://cnx.org/contents/c92f070e-494f-4eb1-a0b9-e36abe4359fd


Each time the update
method is called, the incoming value of
delta
is added to the value in
a variable named timeAccumulator
. When the accumulated time meets or exceeds the
value of flashInterval
, the color is switched from white to blue, or from blue to white,
depending on its current value. Also the time accumulator is set to zero and a new
white/blue cycle begins.

The color switch should occur approximately every 128 milliseconds, or about eight times
per second.

The render method

Recall that the execution of program logic in the update
method does not cause the player's
view of the game to change. It is not until the render
method is executed that the images on
the screen change.

The render
method begins in Listing 11
.

Listing 11
. Beginning of the render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.red);

   

   //Draw the spider.

   spider.draw(0f,0f);

   

   //Draw a white silhouette of the spider.

   spider.drawFlash(133f,0f);

   

   //Draw a blue silhouette of the spider.

   spider.drawFlash(266f,0f,131f,128f,Color.blue);




After setting the drawing mode to honor transparency and setting the background color to
red, the code in Listing 11
causes the three images of the spider along the top of Figure 2
to
be displayed each time the render
method is called. (Recall that the names of the drawing
mode constants appear to be reversed between opaque and transparent.)

The call to the draw
method in Listing 11
displays the spider image in the upper-left corner
of Figure 2
.

The first call to the drawFlash
method calls one of three overloaded versions of the
drawFlash
method. This version of the method draws a white silhouette of the spider at a
location specified by the parameters, 133,0.

The second call to the drawFlash
method draws a silhouette of the spider at a location of
266,0, with a width of 131 pixels, a height of 128 pixels and a blue color.

Note that none of the code in Listing 11
depends on the logic that is executed in the update
method. Therefore, the three images appear to be static despite the fact that they are being
redrawn about 60 times per second.

The large flashing spider

The call to the drawFlash
method in Listing 12
produces the large flashing spider at the
bottom of
Figure 2
and
Figure 3
.

Listing 12
. The large flashing spider.

   //Cause an enlarged version of the spider to flash

   // between white and blue silhouette at a rate

   // of 1/flashInterval.

   spider.drawFlash(0f,0f,262f,256f,silohetteColor);


 }//end render


}//end class Slick0160b


This is the same version of the drawFlash
method that was called to produce the blue
spider in the upper-right corner of
Figure 2
. However, in this case, the third and fourth



parameters specify that the spider should be drawn with a width of 262 pixels and a height
of 256 pixels.

More importantly, rather than passing a constant color as the last parameter,
Listing 12
passes the reference to the Color
object stored in the variable named silohetteColor
.
Recall that the color represented by that object is periodically switched between white and
blue in the update
method of Listing 10
. This causes the color of the spider to switch
between white and blue.

The end of the program

Listing 12
signals the end of the render
method and the end of the class named Slick0160b
.

Run the programs

I encourage you to copy the code from Listing 13
and Listing 14
. Compile the code and
execute it, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Summary

In this module, you learned about using the draw
, drawCentered
, and drawFlash
methods of the
Image
class.

What's next?

In the next module, you will learn how to use the following methods of the
Input
class to
get user input:

isKeyDown
isMouseButtonDown
getMouseX
getMouseY

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0160: Using the draw and drawFlash methods

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Image.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html


File: Slick0160.htm
Published: 02/05/13
Revised: 09/03/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

Complete listings of the programs discussed in this module are shown in
Listing 13
and
Listing 14
below.

Listing 13
. Source code for Slick0160a.java.

/*Slick0160a.java

Copyright 2012, R.G.Baldwin


Calls the draw method several times in succession to

illustrate the various options available with the draw

method. Also illustrates flipping an image.




Listing 13
. Source code for Slick0160a.java.

Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Slick0160a extends BasicGame{

 

 Image rabbit = null;

 

 float rabbitWidth;

 float rabbitHeight;


 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //----------------------------------------------------//


 public Slick0160a(){//constructor

   //Set the title

   super("Slick0160a, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0160a(),512,537,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {


   rabbit = new Image("rabbit.png");




Listing 13
. Source code for Slick0160a.java.

   rabbitWidth = rabbit.getWidth();

   rabbitHeight = rabbit.getHeight();

 

   System.out.println(

                  "rabbitWidth: " + rabbitWidth);

   System.out.println(

                "rabbitHeight: " + rabbitHeight);


   gc.setShowFPS(false) ;

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.white);

   

   rabbit.draw(0f,0f);

   rabbit.draw(133f,0f,new Color(1.0f,0.0f,1.0f));

   rabbit.draw(266f,0f,0.5f);

   rabbit.draw(335f,0f,128f,192);

   

   rabbit.draw(0f,133f);

   rabbit.draw(133f,133f,32f,32f,96f,96f);

   rabbit.draw(0f,266f,256f,532f,32f,32f,96f,96f,new 

Color(1.0f,1.0f,0.0f));

   

   rabbit.drawCentered(399f,266f);

   


   Image tempImage = rabbit.getFlippedCopy(true,false);

   tempImage.draw(266f,399f);


 }//end render




Listing 13
. Source code for Slick0160a.java.

}//end class Slick0160a

//======================================================//


.

Listing 14
. Source code for Slick0160b.java.

/*Slick0160b.java

Copyright 2012, R.G.Baldwin


Illustrates the drawFlash method to draw an image in

silhouette  format and to cause the silhouette  to switch

back and forth between two or more colors.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Slick0160b extends BasicGame{

 

 Image spider = null;

 

 float spiderWidth;

 float spiderHeight;

 

 Color silohetteColor = Color.white;

 long timeAccumulator = 0;




Listing 14
. Source code for Slick0160b.java.

 long flashInterval = 128;


 //Target frame rate 

 int targetFPS = 60;

 //----------------------------------------------------//


 public Slick0160b(){//constructor

   //Set the title

   super("Slick0160b, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0160b(),384,240,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {


   spider = new Image("spider.png");


   spiderWidth = spider.getWidth();

   spiderHeight = spider.getHeight();

 

   System.out.println("spiderWidth: " + spiderWidth);

   System.out.println("spiderHeight: " + spiderHeight);


   gc.setShowFPS(false) ;

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   timeAccumulator += delta;

   if(timeAccumulator >= flashInterval){

     //Reset accumulator and change color of spider




Listing 14
. Source code for Slick0160b.java.

     // silhouette 

     timeAccumulator = 0;

     if(silohetteColor.equals(Color.white)){

       silohetteColor = Color.blue;

     }else{

       silohetteColor = Color.white;

     }//end if

   }//end if

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.red);

   

   //Draw the spider.

   spider.draw(0f,0f);

   

   //Draw a white silhouette of the spider.

   spider.drawFlash(133f,0f);

   

   //Draw a blue silhouette of the spider.

   spider.drawFlash(266f,0f,131f,128f,Color.blue);

   

   //Cause an enlarged version of the spider to flash

   // between white and blue silhouette at a rate

   // of 1/flashInterval.

   spider.drawFlash(0f,0f,262f,256f,silohetteColor);


 }//end render


}//end class Slick0160b

//======================================================//


-end-



Slick0170: Mouse and keyboard input
Learn about mouse and keyboard input with the Slick2D game library.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code
Run the program
Summary
What's next?
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to explain some aspects of mouse and keyboard input.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. Output from the program named Slick0170.java.



Listings

Listing 1
. Beginning of the update method.
Listing 2
. Test for up or down movement.
Listing 3
. Test for collisions with the edges.
Listing 4
. Get and save mouse coordinates.
Listing 5
. Source code for the program named Slick0170.

Preview

Most games and many simulations are interactive. By that I mean that they require user
input to perform according to their design.

I will present and explain a program in this module that allows the user to cause a ladybug
sprite (see Figure 1
)
to move inside the game window by pressing the arrow keys on the
keyboard or the left and right mouse buttons. (The mouse pointer must be inside the game
window for the mouse buttons to move the sprite.)

Figure 1
. Output from the program named Slick0170.java.

Operation



Pressing the right arrow key or the right mouse button causes the sprite to move to the right.

Pressing the left arrow key or the left mouse button causes the sprite to move to the left.

Pressing the up arrow key causes the sprite to move up, and pressing the down arrow key
causes the sprite to move down.

The sprite cannot be caused to move up or down (in this program)
by pressing mouse
buttons.

What you have learned

In the previous module, you learned about using the draw
, drawCentered
, and
drawFlash
methods of the
Image
class.

What you will learn

In this module, you will learn how to use the following methods of the
Input
class to get
input from the user:

isKeyDown
isMouseButtonDown
getMouseX
getMouseY

General background information

Modern computer programs fall generally in one or a combination of two categories:

Event driven programs
Polled programs

Analogy for an event-driven program

I like to think of event-driven programs as being somewhat analogous to the way that we
normally drive our cars. When we come to a red stoplight, we remove our foot from the gas
pedal, press the brake pedal to stop, and allow the motor to idle, thus consuming minimal
fuel. (If we don't have an automatic transmission, we will probably also disengage the
clutch and move the gearshift leaver to the neutral position.)

When we see that the light has turned green, we reengage the transmission if necessary,
gently press the gas pedal, cause the motor to speed up, and drive through the intersection
at a safe and reasonable speed.

Analogy for a polled program

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Image.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html


I like to think of a polled program as being somewhat analogous to a car in which the gas
pedal is strapped to the floor causing the motor to run at maximum rpm all the time.

In such a car, the only way to stop at a stop light would be to disengage the clutch and press
the brake pedal. While the light is red, the motor would be consuming fuel at a high rate.

When the light turns green, we would reengage the clutch, speed through the intersection,
and hope that we don't receive a traffic ticket.

Event-driven versus polled programs

Event-driven programs tend to idle when they have nothing to do, thus conserving
computer resources. Polled programs run at full speed all of the time, thus consuming
maximum computer resources.

Game and simulation programs, (this one included)
, tend to be written as polled programs.
Most other modern programs tend to be written as event-driven programs. However, you
can probably write any program using either scenario, or perhaps a combination of the two.

Slick2D supports both scenarios

With regard to input, Slick2D supports both the polled and the event-driven scenarios.

Probably most user input in a Slick2D game or simulation program should be programmed
using the polled scenario. However, if the user taps a key while the program is in the
render
method, the program might not recognize that the key has been tapped. If that tap is
critical to the operation of the program, it might be wise to also employ the event-driven
scenario to detect such critical events.

The program that I will discuss in this module is written using only the polled approach to
user input. I have published numerous online tutorials that explain the use of the event-
driven approach that you can find with a Google search.

Keyboard, mouse, and controller

The Slick2D
Input
class supports input from the keyboard, the mouse, or from a game
controller. I will discuss only keyboard and mouse input in this module.

Discussion and sample code

Much of this program is identical or very similar to the program named Slick0150a that I
explained in the earlier module titled A first look at sprite motion, collision detection, and
timing control
. I will explain only the code that is new and different in this module.

Will discuss in fragments

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html
http://cnx.org/contents/c92f070e-494f-4eb1-a0b9-e36abe4359fd/


A complete listing of this program is provided in Listing 5
. Most of the code that is new
and different is contained in the update
method, which begins in Listing 1
.

Listing 1
. Beginning of the update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{

   

   //Get a reference to the Input object.

   Input input = gc.getInput();

   

   //Control horizontal bug position by pressing the

   // arrow keys or pressing the left and right mouse

   // buttons.

   if(input.isKeyDown(Input.KEY_RIGHT) || 

      input.isMouseButtonDown(Input.MOUSE_RIGHT_BUTTON))

{

     bugX += xStep;

   }//end if

   

   if(input.isKeyDown(Input.KEY_LEFT) || 

       input.isMouseButtonDown(Input.MOUSE_LEFT_BUTTON))

{

     bugX -= xStep;

   }//end if


Get a reference to the Input object

Listing 1
begins by getting a saving a reference to the Input
object that is associated with
the
GameContainer
object. All user input can then be obtained by calling methods on the
reference to the Input
object.

Test for right or left movement

Then Listing 1
uses a logical inclusive or
operator to determine if either the right arrow key
or the right mouse button
(or both)
is currently in the pressed (or down)
state. In other

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html


words, is the user holding the right arrow key
or the right mouse button
down?

If the test returns true, the value of bugX
is increased. This will cause the visual
manifestation of the sprite to move to the right later when the render
method is executed.

Then Listing 1
performs a similar test on the left arrow key
and the left mouse button
,
decreasing the value of
bugX
if either test returns true.

Test for up or down movement

Listing 2
performs similar tests on the up arrow key
and the down arrow key
for the
purpose of increasing or decreasing the value of bugY
. If the value of bugY
is changed,
this will cause the sprite to move up or down later when the render
method is executed.

Listing 2
. Test for up or down movement.

   //Control vertical bug position by pressing the arrow

   // keys. Vertical bug position cannot be controlled 

by

   // pressing mouse buttons.

   if(input.isKeyDown(Input.KEY_UP)){

     bugY -= yStep;

   }//end if

   

   if(input.isKeyDown(Input.KEY_DOWN)){

     bugY += yStep;

   }//end if

No up button
or down button

There is no up button
and no down button
on the mouse, so in this program it is not possible
to move the sprite up or down by pressing mouse buttons. There are ways that such a thing
could be accomplished (such as holding down a keyboard key and pressing a mouse button)
, but they were not considered important for the purpose of this module.

Test for collisions with the edges



The code in Listing 3
is similar to, but simpler than the corresponding code in the earlier
program named Slick0150a
.

In this case, if the sprite collides with an edge, it simply stops moving instead of bouncing
off the edge as was the case in the earlier program.

Listing 3
. Test for collisions with the edges.

   //Test for collisions with the sides of the game

   // window and stop moving the bug when a collision

   // occurs.

   if(bugX + bugWidth >= backgroundWidth){

     //Set the position to the right edge less the width

     // of the sprite.

     bugX = backgroundWidth - bugWidth;

   }//end if

   

   //Continue testing for collisions with the edges.

   if(bugX <= 0){

     bugX = 0;

   }//end if

   

   if(bugY + bugHeight >= backgroundHeight){

     bugY = backgroundHeight - bugHeight;

   }//end if

   

   if(bugY <= 0){

     bugY = 0;

   }//end if

Get and save mouse coordinates

Listing 4
calls the getMouseX
and
getMouseY
methods to get and save the coordinates of
the mouse pointer when the mouse pointer is inside the game window. These values will be
displayed later when the render
method is executed as shown in
Figure 1
.



Listing 4
. Get and save mouse coordinates.

   //Get and save the X and Y coordinates of the mouse

   // pointer.

   mouseX = input.getMouseX();

   mouseY = input.getMouseY();

   

 }//end update

The Input
class also provides two methods named getAbsoluteMouseX
and
getAbsoluteMouseY
. I'm not certain how these two methods differ from the two methods
that were called in Listing 4
, but I haven't spent any time investigating the difference.

The end of the update method

Listing 4
also signals the end of the update
method and the end of this discussion.

Run the program

I encourage you to copy the code from Listing 5
. Compile the code and execute it, making
changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

Summary

In this module, you learned how to use the following methods of the
Input
class to get user
input:

isKeyDown
isMouseButtonDown
getMouseX
getMouseY

What's next?

In the next module, you will learn how to use objects of the SpriteSheet
class and the
Animation
class to perform simple sprite sheet animation.

Miscellaneous

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html


This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0170: Mouse and keyboard input
File: Slick0170.htm
Published: 02/05/13
Revised: 09/03/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

A complete listing of the program discussed in this module is provided in
Listing 5
.

Listing 5
. Source code for the program named Slick0170.

/*Slick0170java




Listing 5
. Source code for the program named Slick0170.

Copyright 2013, R.G.Baldwin


Cause a ladybug sprite to move inside the game window by

pressing the arrow keys or the left and right mouse

buttons. The mouse pointer must be inside the game window

for the mouse buttons to move the sprite.


Right arrow or right mouse button: move right

Left arrow or left mouse button: move left

Up arrow: move up

Down arrow: move down


The program also gets and displays the X and Y 

coordinates of the mouse pointer.


Much of this program is identical to the earlier program

named Slick0150a.java.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Input;


public class Slick0170 extends BasicGame{

 

 Image bug = null;

 Image background = null;

 

 float backgroundWidth;

 float backgroundHeight;

 

 float bugX = 100;

 float bugY = 100;

 float bugWidth;

 float bugHeight;

 

 float xStep = 4.0f;//horizontal step size




Listing 5
. Source code for the program named Slick0170.

 float yStep = 3.0f;//vertical step size

 

 float bugScale = 0.75f;//drawing scale factor

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 

 //This is new code relative to Slick0150a.java

 int mouseX = 0;

 int mouseY = 0;

 //----------------------------------------------------//


 public Slick0170(){//constructor

   //Set the title

   super("Slick0170, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0170(),414,307,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   bug = new Image("ladybug.png");

   background = new Image("background.jpg");

   

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();

   

   bugWidth = bug.getWidth()*bugScale;

   bugHeight = bug.getHeight()*bugScale;

   

   System.out.println(

                  "backgroundWidth: " + backgroundWidth);

   System.out.println(

                "backgroundHeight: " + backgroundHeight);




Listing 5
. Source code for the program named Slick0170.

   System.out.println("bugWidth: " + bugWidth);

   System.out.println("bugHeight: " + bugHeight);

   

   gc.setTargetFrameRate(targetFPS);//set frame rate

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Most of the code in this method is different from

   // the code in Slick0150a.java.

   

   //Get a reference to the Input object.

   Input input = gc.getInput();

   

   //Control horizontal bug position by pressing the

   // arrow keys or pressing the left and right mouse

   // buttons.

   if(input.isKeyDown(Input.KEY_RIGHT) || 

      input.isMouseButtonDown(Input.MOUSE_RIGHT_BUTTON)){

     bugX += xStep;

   }//end if

   

   if(input.isKeyDown(Input.KEY_LEFT) || 

       input.isMouseButtonDown(Input.MOUSE_LEFT_BUTTON)){

     bugX -= xStep;

   }//end if

   

   //Control vertical bug position by pressing the arrow

   // keys. Vertical bug position cannot be controlled by

   // pressing mouse buttons.

   if(input.isKeyDown(Input.KEY_UP)){

     bugY -= yStep;

   }//end if

   

   if(input.isKeyDown(Input.KEY_DOWN)){

     bugY += yStep;

   }//end if

   

   //Test for collisions with the sides of the game

   // window and stop moving the bug when a collision

   // occurs.




Listing 5
. Source code for the program named Slick0170.

   if(bugX + bugWidth >= backgroundWidth){

     //Set the position to the right edge less the width

     // of the sprite.

     bugX = backgroundWidth - bugWidth;

   }//end if

   

   //Continue testing for collisions with the edges.

   if(bugX <= 0){

     bugX = 0;

   }//end if

   

   if(bugY + bugHeight >= backgroundHeight){

     bugY = backgroundHeight - bugHeight;

   }//end if

   

   if(bugY <= 0){

     bugY = 0;

   }//end if

   

   //Get and save the X and Y coordinates of the mouse

   // pointer.

   mouseX = input.getMouseX();

   mouseY = input.getMouseY();

   

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);

   

   //Draw the background to erase the previous picture.

   background.draw(0,0);

   

   //Draw the bug in its new location.

   bug.draw(bugX,bugY,bugScale);

   

   //Display the location of the mouse pointer. This is

   // new code relative to Slick0150a.java

   g.drawString(

              "X: " + mouseX + " Y: " + mouseY,100f,10f);

 }//end render




Listing 5
. Source code for the program named Slick0170.

}//end class Slick0170

//======================================================//


-end-



Slick0180: Sprite sheet animation, part 1
Learn to use objects of the Slick2D SpriteSheet class and the Animation class to perform
simple spritesheet animation.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information

The SpriteSheet class
The Animation class

Discussion and sample code

The class named Slick0180
The init method
The update method
The render method

Run the program
Summary
What's next?
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to teach you how to use objects of the SpriteSheet
class and
the Animation
class to perform simple sprite sheet animation.



Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. The sprite sheet.
Figure 2
. Random screen shot of the animation in action.
Figure 3
. Random screen shot of the animation in action.
Figure 4
. Random screen shot of the animation in action.

Listings

Listing 1
. Beginning of the class named Slick0180.
Listing 2
. Beginning of the init method.
Listing 3
. Create a SpriteSheet object.
Listing 4
. Create a new Animation object.
Listing 5
. Set frame rate and display location.
Listing 6
. The update method.
Listing 7
. The render method.
Listing 8
. Source code for Slick0180 .

Preview

I will present a program that uses the top row of sprites from the sprite sheet shown in
Figure 1
along with
a SpriteSheet
object and an Animation
object to produce an animation
of a dog playing.
(Note that the overall sprite sheet image is quite small, and the image
shown in Figure 1
was enlarged for this presentation.)

Figure 1
. The sprite sheet.



Figure 1
. The sprite sheet.

Figure 2
, Figure 3
, and
Figure 4
show random screen shots taken while the animation was
running.

Figure 2
. Random screen shot of the animation in action.

.

Figure 3
. Random screen shot of the animation in action.



Figure 3
. Random screen shot of the animation in action.

.

Figure 4
. Random screen shot of the animation in action.

Operating characteristics

The program uses only the five sprites in the top row of Figure 1
. The five sprites in the
bottom row are ignored. (A program that uses all ten sprites in both rows will be presented
in the next module.)

By default, the program displays one cycle of five sprites each second. (Each sprite is
displayed for 200 milliseconds, or 0.2 seconds.)

Clock time

As you can see in Figure 4
, clock time in seconds is displayed below the animation.
That
makes it easy to visually correlate the repetition rate with the clock.



Repetition rate is independent of the frame rate

The time that each image of the dog is displayed is
independent of the frame rate. This can
be demonstrated by
changing the value of a variable named targetDelta
and observing the
relationship between the repetition rate and the clock.
However, best results are achieved by
keeping targetDelta
less than the
display time for each sprite (
duration
)
.

What you have learned

In the previous module, you learned how to use the following methods of the
Input
class to
get user input:

isKeyDown
isMouseButtonDown
getMouseX
getMouseY

What you will learn

In this module, you will learn how to use objects of the SpriteSheet
class and the
Animation
class to perform simple sprite sheet animation. In the next module, you will
learn how to perform more complex animation.

General background information

The SpriteSheet class

Sprite sheets are individual sprites (or images)
combined into a single image as shown in
Figure 1
. Slick2D provides the SpriteSheet
class that makes it relatively easy for you to
access each of the sub-images of the sheet as separate images in your program.

The SpriteSheet
class assumes that all the images are evenly spaced. It splits the source
image into an even grid of cells and allows you to access the image in each cell as a
separate image.

(Slick2D also provides the capability to work with packed sprite sheets with fewer
restrictions on the organization of the sprite sheet.)

The Animation class

A series of images

Since well before the first Disney movies, animations have been created by displaying a
series of images one after the other.

http://slick.ninjacave.com/javadoc/org/newdawn/slick/Input.html


Each image (or frame)
is typically displayed for the same amount of time, but that is not
always the case, as will be demonstrated by the program in the next module.

Slick2D provides a class named Animation
that does most of the heavy lifting in the
display of an animation.

Create, populate, and configure the object

There are several different ways to create, populate, and configure an Animation
object
containing a series of images, with the same or different display durations for the images.

Displaying the images

By default, calling one of several overloaded draw methods on the
Animation
object
causes it to display the sequence of images and to start over when the last image has been
displayed. However, that behavior can be overridden in order to provide more customized
behavior.

(It is actually more complicated that that, as you will see later in the discussion of the
render
method.)

Animations can be stopped, started and restarted (returning to the first frame of the
animation)
. The capabilities of the Animation
class go far beyond those illustrated in this
module and the next.

Discussion and sample code

The class named Slick0180

Will discuss in fragments

A complete listing of the program named Slick0180
is provided in Listing 8
. I will break
the program down and discuss it in fragments.

Listing 1
shows the beginning of the class named
Slick0180
down through the main
method.

Listing 1
. Beginning of the class named Slick0180.



Listing 1
. Beginning of the class named Slick0180.

public class Slick0180 extends BasicGame{

 Image spriteSheetImage = null;


 float spriteSheetWidth;

 float spriteSheetHeight;

 int spritesPerRow = 5;

 int spritesPerColumn = 2;


 int targetDelta = 16;//msec

 int duration = 200;//time to display each sprite

 long totalTime = 0;//accumulate total time for display


 SpriteSheet spriteSheet;

 Animation animation;


 int spriteWidth;

 int spriteHeight;


 float spriteX = 0;//sprite drawing location

 float spriteY = 0;

 //---------------------------------------------------

-//

 public Slick0180(){

   //Call to superclass constructor is required.

   super("Slick0180, Baldwin.");

 }//end constructor

 //---------------------------------------------------

-//


 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0180(),450,120,false);

   app.start();//this statement is required

 }//end main


Instance variables



Listing 1
declares a number of instance variables. The purpose of these variables should
become clear based on their names and their usage that I will discuss later.

The constructor and the main method

There is nothing new in the constructor and the main
method in
Listing 1
.

The init method

The init
method begins in Listing 2
. The embedded comments should provide a sufficient
explanation of the code in Listing 2
.

Listing 2
. Beginning of the init method.



Listing 2
. Beginning of the init method.

 public void init(GameContainer gc)

                                  throws SlickException 

{

   spriteSheetImage = new Image("Slick0180a1.png");

   //Enlarge the sprite sheet.

   Image temp = spriteSheetImage.getScaledCopy(580,224);

   spriteSheetImage = temp;


   //Get, save, and display the width and the height

   // of the sprite sheet.

   spriteSheetWidth = spriteSheetImage.getWidth();

   spriteSheetHeight = spriteSheetImage.getHeight();


   System.out.println(

              "spriteSheetWidth: " + spriteSheetWidth);

   System.out.println(

              "spriteSheetHeight: " + 

spriteSheetHeight);

              


//Compute the width and height of the individual 

// sprite images.


   spriteWidth = (int)(spriteSheetWidth/spritesPerRow);

   spriteHeight =

               (int)

(spriteSheetHeight/spritesPerColumn);


Create a SpriteSheet object

Listing 3
creates a new SpriteSheet
object based on the sprite sheet image along with the
width and height of the individual sprites.

Listing 3
. Create a SpriteSheet object.



Listing 3
. Create a SpriteSheet object.

   //Instantiate a new Spritesheet object based on the

   // width and height of the tiles.

   spriteSheet = new SpriteSheet(spriteSheetImage,

                                 spriteWidth,

                                 spriteHeight);


Create a new Animation object

Listing 4
creates a new Animation
object that will process the SpriteSheet
object
instantiated in
Listing 3
.

Listing 4
. Create a new Animation object.

   //Create a new animation based on a selection of

   // sprites from the sprite sheet.

   animation = new Animation(spriteSheet,

                             0,//first column

                             0,//first row

                             4,//last column

                             0,//last row

                             true,//horizontal

                             duration,//display time

                             true//autoupdate

                             );


Constructor parameters

Obviously, the first parameter to the constructor for the Animation
class specifies the
SpriteSheet
object.



The second and third parameters specify that the first image in the sequence should be the
top-left image in Figure 1
.

The fourth and fifth parameters specify that the last image in the sequence should be the
top-right image in Figure 1
.

The true
value for the sixth parameter specifies that the images should be scanned
horizontally.

The duration
value in the seventh parameter specifies that each image should be displayed
for 200 milliseconds.

The true
value for the last parameter specifies that the display should continue cycling
through the images until the animation is stopped.

Set frame rate and display location

The code is Listing 5
sets the frame rate and specifies the drawing location. The drawing
location is the location within the game window where the sprite will be displayed.

Listing 5
. Set frame rate and display location.

   gc.setShowFPS(true);//show FPS

   ////set frame rate

   gc.setTargetFrameRate((int)(1000/targetDelta));


   //Set drawing location. This is the location within

   // the game window where the sprite will be 

displayed.

   spriteX = spriteWidth;

   spriteY = 0;

 }//end init


The update method



The update
method is shown in Listing 6
. As indicated in the comments, the computation
of totalTime
in the method has nothing to do with the animation. Instead, it is used to
display the clock time as shown in Figure 2
.

Listing 6
. The update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{

   //Note that the following is for clock time display

   // only. It does not effect the animation.

   totalTime += delta;//update total time accumulator

 }//end update


The render method

The render
method is shown in Listing 7
. The only thing that is new here is the call to the
draw
method on the Animation
object.

Listing 7
. The render method.



Listing 7
. The render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.gray);


   //Draw the currently selected animation image at the

   // specified location

   animation.draw(spriteX,spriteY);


   g.drawString("totalTime = "+totalTime/1000,10f,100f);

 }//end render


}//end class Slick0180


Powerful behavior

The behavior of the Animation
object and its draw
method is very powerful.

The Animation
object keeps track of the scheduling requirements of the animation,
such as which image should be displayed at the current time.
Calling the draw
method on the Animation
object causes that image to actually be
displayed.

The image display schedule being managed by the Animation
object is independent of the
frame rate.

The Animation
object does its thing, and the render
method does its thing virtually
independent of one another. When the
render
method decides that it is time to display an
animation image, it calls the draw
method on the Animation
object.

The Animation
object delivers the image that is scheduled for display at that point in time
according to the predetermined animation schedule and the draw
method causes the image
to be displayed.

Overloaded draw methods

There are several overloaded versions of the draw
method including versions to filter the
colors and to change the width and height of the displayed image.



Best results

Now you know why, as mentioned
earlier
, best results are achieved by keeping
targetDelta
less than the
display time (
duration
)
for each sprite. If targetDelta
is greater
than the duration
, some images will be skipped and not displayed in the proper sequence.

For example, if the Animation
object is switching from one image to the next every 0.10
second, but the draw
method is only being called every 0.13 seconds, some of the images
in the sequence won't be displayed and the quality of the animation will probably be poor.

However, this is also dependent on the amount of change from one image to the next. If the
change from one image to the next is small, then skipping an occasional image might not
matter that much.

Run the program

I encourage you to copy the code from Listing 8
. Compile the code and execute it, making
changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

Summary

In this module, you learned how to use objects of the SpriteSheet
class and the Animation
class to perform simple sprite sheet animation.

What's next?

In the next module, you will learn how to use objects of the SpriteSheet
class and the
Animation
class to perform more complex sprite sheet animations than was the case in this
module.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0180: Sprite sheet animation, part 1
File: Slick0180.htm
Published: 02/05/13
Revised: 06/08/15 for 64-bit



Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

A complete listing of the program discussed in this module is provided in
Listing 8
.

Listing 8
. Source code for Slick0180 .

/*Slick0180.java

Copyright 2013, R.G.Baldwin


Uses one row of sprites from a sprite sheet along with

an Animation object to draw an animation of a dog playing.


By default, the program displays one cycle of five 

sprites per second. Clock time is displayed below the 

animation.


The time that each image of the dog is displayed is

independent of the frame rate. Demonstrate this by

changing the value of targetDelta and observing the

relationship between the animation times and the clock.




Listing 8
. Source code for Slick0180 .

For best results, keep the targetDelta less than the

display time for each sprite (duration).


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.SpriteSheet;

import org.newdawn.slick.Animation;

import org.newdawn.slick.Color;


public class Slick0180 extends BasicGame{

 Image spriteSheetImage = null;


 float spriteSheetWidth;

 float spriteSheetHeight;

 int spritesPerRow = 5;

 int spritesPerColumn = 2;


 int targetDelta = 16;//msec

 int duration = 200;//time to display each sprite

 long totalTime = 0;//accumulate total time for display


 SpriteSheet spriteSheet;

 Animation animation;


 int spriteWidth;

 int spriteHeight;


 float spriteX = 0;//sprite drawing location

 float spriteY = 0;

 //----------------------------------------------------//

 public Slick0180(){

   //Call to superclass constructor is required.

   super("Slick0180, Baldwin.");

 }//end constructor

 //----------------------------------------------------//




Listing 8
. Source code for Slick0180 .

 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0180(),450,120,false);

   app.start();//this statement is required

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   spriteSheetImage = new Image("Slick0180a1.png");

   //Enlarge the sprite sheet.

   Image temp = spriteSheetImage.getScaledCopy(580,224);

   spriteSheetImage = temp;


   spriteSheetWidth = spriteSheetImage.getWidth();

   spriteSheetHeight = spriteSheetImage.getHeight();


   System.out.println(

              "spriteSheetWidth: " + spriteSheetWidth);

   System.out.println(

              "spriteSheetHeight: " + spriteSheetHeight);

   spriteWidth = (int)(spriteSheetWidth/spritesPerRow);

   spriteHeight =

               (int)(spriteSheetHeight/spritesPerColumn);


   //Instantiate a new spriteSheet object based on the

   // width and height of the tiles.

   spriteSheet = new SpriteSheet(spriteSheetImage,

                                 spriteWidth,

                                 spriteHeight);


   //Create a new animation based on a selection of

   // sprites from the sprite sheet.

   animation = new Animation(spriteSheet,

                             0,//first column

                             0,//first row

                             4,//last column

                             0,//last row

                             true,//horizontal

                             duration,//display time




Listing 8
. Source code for Slick0180 .

                             true//autoupdate

                             );


   gc.setShowFPS(true);//show FPS

   ////set frame rate

   gc.setTargetFrameRate((int)(1000/targetDelta));


   //set drawing location

   spriteX = spriteWidth;

   spriteY = 0;

 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{

   //Note that the following is for clock time display

   // only. It does not effect the animation.

   totalTime += delta;//update total time accumulator

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.gray);


   //Draw the currently selected animation image at the

   // specified location

   animation.draw(spriteX,spriteY);


   g.drawString("totalTime = "+totalTime/1000,10f,100f);

 }//end render


}//end class Slick0180

//======================================================//


-end-



Slick0190: Sprite sheet animation, part 2
Learn to use objects of the Slick2D SpriteSheet class and the Animation class to perform
more complex spritesheet animation than in the previous module.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information

The SpriteSheet class
The Animation class

Discussion and sample code

The class named Slick0190
The init method
The update method
The render method

Run the program
Summary
What's next?
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to teach you how to use objects of the SpriteSheet
class and
the Animation
class to perform more complex sprite sheet animations than was the case in
the earlier module titled Slick0180: Sprite sheet animation, part 1
.

http://cnx.org/contents/0fc6c084-4f60-4497-a2d7-802a396bc985


Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. The sprite sheet.
Figure 2
. Sprite running to the right.
Figure 3
. Sprite answering nature's call.
Figure 4
. Sprite running to the left.

Listings

Listing 1
. Beginning of the class named Slick0190.
Listing 2
. Beginning of the init method.
Listing 3
. Begin populating the Animation object.
Listing 4
. Add images from the bottom row of
Listing 5
. Finish populating the animation object.
Listing 6
. Beginning of the update method.
Listing 7
. Compute display locations for first 20 frames.
Listing 8
. Don't change position for middle group of sprite images
Listing 9
. Run from right to left.
Listing 10
. The render method.
Listing 11
. Source code for Slick0190.

Preview

I will present and explain a program that uses both rows of sprites from the sprite sheet
shown in
Figure 1
. The program uses a SpriteSheet
object and an Animation
object to
produce an animation of a dog playing and answering nature's call. (Note that the overall
sprite sheet image is quite small, and the image shown in
Figure 1
was enlarged for this
presentation.)

Figure 1
. The sprite sheet.



Figure 1
. The sprite sheet.

Description of the animation

This animation begins with the sprite running from left to right across the game window.
Then the sprite stops on the right side of the game window and answers nature's call.
Although it isn't shown here, the sprite turns and faces left during that process. Then the
sprite runs from right to left across the game window. This pattern repeats for as long as the
program runs, and is illustrated by the three screen shots that follow.

Sprite running to the right

Figure 2
shows the sprite running from left to right. This is a flipped version of one of the
images in the top row of
Figure 1
.

Figure 2
. Sprite running to the right.

Sprite answering nature's call



Figure 3
shows the sprite answering nature's call. This is a flipped version of one of images
from the bottom row of
Figure 1
.

Figure 3
. Sprite answering nature's call.

Sprite running to the left

Figure 4
shows the sprite running from right to left. This is one of the images from the top
row of
Figure 1
.

Figure 4
. Sprite running to the left.

What you have learned

In the previous module
, you learned how to use objects of the SpriteSheet
class and the
Animation
class to perform simple sprite sheet animation.

http://cnx.org/contents/0fc6c084-4f60-4497-a2d7-802a396bc985


What you will learn

In this module, you will learn how to use objects of the SpriteSheet
class and the
Animation
class to perform more complex sprite sheet animations than was in the previous
module.

General background information

The SpriteSheet class

There isn't much that's new in this module regarding the SpriteSheet
class. The program
instantiates and populates a SpriteSheet
object and used the images stored in that object to
populate an Animation
object.

The SpriteSheet
object is used in a different way than was the case in the previous module,
but that will be explained in conjunction with populating the Animation
object.

The Animation class

An Animation
object is populated in a significantly different way in this module than in
the previous module.

In the previous module, a SpriteSheet
object's reference was passed to the Animation
constructor along with a specification of the images to be extracted from the sprite sheet
and the amount of time that each image should be displayed. The Animation
constructor
extracted the images from the sprite sheet and populated the new Animation
object
automatically. Among other restrictions, it was necessary that each image be displayed for
the same amount of time.

One image at a time

In this module, an empty Animation
object is instantiated and then populated one image at
a time. (Of course, loops are used to make that process easier.)
Among other things, this
makes it possible to:

Use multiple copies of the individual images on the sprite sheet
Use flipped versions of the images on the sprite sheet
Specify different display times for the different images on the sprite sheet

Different animation rates

For example, the display times for the images from the bottom row of Figure 1
are four
times greater than the display times for the images from the top row. Thus, the animation



slows down when the sprite stops to answer nature's call on the right side of the game
window then speeds up again when the sprite starts running from right to left.

Discussion and sample code

The class named Slick0190

Will discuss in fragments

A complete listing of the program named Slick0190
is provided in Listing 11
. I will break
the program down and discuss it in fragments.

Listing 1
shows the beginning of the class named Slick0190
down through the main
method. There is nothing in Listing 1
that should require an explanation beyond the
embedded comments. However, it is worth noting that unlike the previous module, Listing
1
instantiates a new empty object of the class Animation
and saves its reference in the
instance variable named animation
. This object will be populated with images by the init
method later.

Listing 1
. Beginning of the class named Slick0190.



Listing 1
. Beginning of the class named Slick0190.

public class Slick0190 extends BasicGame{

 Image spriteSheetImage = null;


 float spriteSheetWidth;

 float spriteSheetHeight;

 int spritesPerRow = 5;

 int spritesPerColumn = 2;

 int spriteWidth;

 int spriteHeight;


 int targetDelta = 16;//msec

 SpriteSheet spriteSheet;

 Animation animation = new Animation();


 //Horizontal and vertical drawing coordinates.

 float spriteX = 0;

 float spriteY = 0;


 //---------------------------------------------------
-//

 public Slick0190(){

   //Call to superclass constructor is required.

   super("Slick0190, Baldwin.");

 }//end constructor

 //---------------------------------------------------

-//


 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0190(),450,120,false);

   app.start();//this statement is required

 }//end main


The init method



Most of the new code in this program is contained in the init
method, which begins in
Listing 2
. However, the code in
Listing 2
is not new and should not require an explanation
beyond the embedded comments.

Listing 2
. Beginning of the init method.

 public void init(GameContainer gc)

                                  throws SlickException 

{

   //Create a SpriteSheet object

   spriteSheetImage = new Image("Slick0190a1.png");

   //Enlarge the sprite sheet.

   Image temp = spriteSheetImage.getScaledCopy(580,224);

   spriteSheetImage = temp;


   spriteSheetWidth = spriteSheetImage.getWidth();

   spriteSheetHeight = spriteSheetImage.getHeight();

   spriteWidth = (int)(spriteSheetWidth/spritesPerRow);

   spriteHeight =

               (int)

(spriteSheetHeight/spritesPerColumn);


   //Instantiate a new spriteSheet object based on the

   // width and height of the individual tiles on the

   // sheet.

   spriteSheet = new SpriteSheet(spriteSheetImage,

                                 spriteWidth,

                                 spriteHeight);


Begin populating the Animation object.

The code in Listing 3
begins the process of populating the Animation object using images
extracted from the sprite sheet shown in Figure 1
.



Listing 3
. Begin populating the Animation object.

   //Populate the Animation object

   //Begin by adding four sets of five sprites from the

   // top row with the images flipped to face right.

   for(int cntr = 0;cntr < 4;cntr++){

     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

             

spriteSheet.getSprite(cnt,0).getFlippedCopy(

                                        

true,false),100);

     }//end inner loop

   }//end outer loop


The inner loop in Listing 3
calls the getSprite
method of the SpriteSheet
five times in
succession to extract each of the images in the top row in Figure 1
.

Flip the images

The sprites represented by those five images are facing the wrong direction. Therefore,
Listing 3
calls the getFlippedCopy
method of the Image
class to flip the images
horizontally before adding them to the contents of the Animation
object.

The addFrame method

The version of the addFrame
method used in
Listing 3
requires two parameters:

A reference to an Image
object
The time duration in milliseconds that the image should be displayed in the ongoing
animation process

The display time duration

The time duration was set to 100 milliseconds for each of the images from the top row of
Figure 1
. However, that is not a requirement. You can set a different time duration for
every image that you add to an Animation
object if that is required to meet your needs.

Repeat the process

The outer loop in Listing 3
causes the process to be repeated four times. Therefore, when
the code in Listing 3
finishes executing, the Animation
object contains 20 images made up



of four set of the five images in the top row of Figure 1
. These 20 images will be used to
cause the sprite to run and jump from left to right across the game window.

Add images from the bottom row of Figure 1

Listing 4
uses essentially the same logic (broken into two nested loops)
to add four sets of
images from the bottom row of Figure 1
.

Listing 4
. Add images from the bottom row of Figure 1.

Flip to face the right

The first two set of images are flipped to face to the right. The last two sets of images are
not flipped. This is the reason for breaking this process into a pair of nested loops instead of

   //Add two sets of five sprites from the bottom row

   // with the images flipped to face right.

   for(int cntr = 0;cntr < 2;cntr++){                    
     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

             

spriteSheet.getSprite(cnt,1).getFlippedCopy(

                                        

true,false),400);

     }//end inner loop

   }//end outer loop


   //Add two sets of five sprites from the bottom row

   // with the images facing left.

   for(int cntr = 0;cntr < 2;cntr++){

     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

                       

spriteSheet.getSprite(cnt,1),400);

     }//end inner loop

   }//end outer loop




using a single nested loop.

If you watch the animation carefully, you will see that the sprite begins answering nature's
call facing to the right. Half way through answering nature's call, the sprite spins around
and faces to the left. After that, it runs across the screen from right to left.

The display time duration

Note that the specified time duration for these twenty images is 400 milliseconds. Two
major changes occur during this part of the animation (relative to the previous part)
:

The sprite does not move horizontally while these 20 images are being displayed
Each of the 20 images is displayed four times as long as when the sprite is running.

Finish populating the animation object

Listing 5
finishes populating the Animation object by adding four more sets of the five
images in the top row of Figure 1
. In this case, however, the images are not flipped.
Therefore, they are used to cause the sprite to run from right to left across the game
window.

Listing 5
. Finish populating the animation object.



Listing 5
. Finish populating the animation object.

   //Add four sets of five sprites from the top row with

   // the images facing left

   for(int cntr = 0;cntr < 4;cntr++){

     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

                       

spriteSheet.getSprite(cnt,0),100);

     }//end for loop

   }//end for loop


   gc.setShowFPS(true);//display FPS

   //Set frame rate

   gc.setTargetFrameRate((int)(1000/targetDelta));


 }//end init


Listing 5
also takes care of some common administrative details at the end, signaling the
end of the init
method.

The update method

The update
method begins in Listing 6
. The primary purpose of update
method in this
program is to control the physical placement of each sprite when it is displayed.

Listing 6
. Beginning of the update method.



Listing 6
. Beginning of the update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{


   int stepSize = 15;//Distance the sprite moves

   int frame = animation.getFrame();//animation frame

   int oneThird = animation.getFrameCount()/3;


The getFrameCount method

On the basis of the previous discussion, we already know that the Animation
object
contains a sequence of 60 images or frames. Rather than to rely on that knowledge,
however, Listing 6
calls the getFrameCount
method on the Animation
object to determine
the number frames in the object.

Three groups of sprites

That value is divided by 3 and saved in the variable named oneThird
. The logic that
follows is based on dividing the sprites into three equal size groups and processing them
differently depending on whether they fall in the first, second, or third group.

Get the current frame number

Listing 6
calls the getFrame
method on the Animation
object to determine which frame
should be displayed by this iteration of the game loop. That value is saved in the variable
named frame
.

Compute the display location

Having determined which image is to be displayed, we must then compute the horizontal
position within the game window at which to display the image.

The display logic

If the current frame is within the first third, the display position assigned to the frame
should make it appear that the sprite is running from left to right across the game window.
Therefore, the horizontal display coordinate values for the sprites in this group should be
proportional to the frame number from 0 through 19.



If the current frame is within the second third, the horizontal display coordinate should not
change. (The sprite should be stationary.)
The sprites in this group are all intended to be
displayed in the same location.

If the current frame is within the third group, things are a little more complicated. The
horizontal display coordinate values assigned to the sprites should make it appear that the
sprite is running from right to left across the game window. Therefore, the coordinate value
should be equal to the rightmost excursion less a value that is proportional to the frame
number, after adjusting the frame number to account for the 20 frames during which the
sprites were stationary.

This process begins in Listing 7
.

Listing 7
. Compute display locations for first 20 frames.

   if(frame < oneThird){

     //Sprite is moving to the right. Compute the new

     // position.

     spriteX = frame*stepSize;


Figures in the first group

Listing 7
tests to determine if the current frame is in the first third. If so, it computes a
horizontal position coordinate value as the product of the frame number and the stepSize
in
pixels, which was defined in Listing 6
.

Figures in the middle group

The process of computing the horizontal position coordinate value continues in Listing 8
.

Listing 8
. Don't change position for middle group of sprite images.



Listing 8
. Don't change position for middle group of sprite images.

   }else if(frame < 2*oneThird){

     //Sprite is stationary. Don't change position


Listing 8
tests to determine if the current frame is in the middle group. If so, it causes the
update
method to return without changing the horizontal position coordinate value, thus
allowing the sprite to remain in a stationary position.

Figures in the third group

The horizontal position values computed in Listing 9
make it appear that the sprite is
running from right to left across the game window.

This is one of those opportune times when it is appropriate to say that I will leave it as an
exercise for the student to dust off their high-school algebra books and figure out how the
code in Listing 9
achieves the desired result.

Listing 9
. Run from right to left.



Listing 9
. Run from right to left.

   }else if(frame < 3*oneThird){

     //Cause the sprite to turn around and start

     // moving to the left toward the starting point.

     //Reduce frame count by number of frames during

     // which the sprite wasn't moving.

     frame -= oneThird;

     //Compute the new position.

     spriteX = (2*oneThird - frame)*stepSize;

   }//end else if

   

 }//end update


Listing 9
also signals the end of the update
method.

The render method

Now it's time to realize the benefit of all of the hard work that went into planning for and
writing the code
in the init
and update
methods. The code in the render
method, which is
shown in Listing 10
, is almost trivial.

Listing 10
. The render method.



Listing 10
. The render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{

   g.setDrawMode(g.MODE_NORMAL);

   g.setBackground(Color.gray);

   animation.draw(spriteX,spriteY);


 }//end render


}//end class Slick0190


There is nothing left for the render
method to do other than to send a message to the
Animation
object once during each iteration of the game loop asking it to draw the current
frame.

Listing 10
signals the end of the render
method, the end of the Slick0190
class, and the
end of the program.

Run the program

I encourage you to copy the code from Listing 11
. Compile the code and execute it,
making changes, and observing the results of your changes. Make certain that you can
explain why your changes behave as they do.

Summary

In this module, you learned how to use objects of the SpriteSheet
class and the Animation
class to perform more complex sprite sheet animations than was the case in the previous
module.

What's next?

In the next module, you will learn how to develop a sprite class from which you can
instantiate and animate swarms of sprite objects.

Miscellaneous

This section contains a variety of miscellaneous information.



Note:
Housekeeping material

Module name: Slick0190-Sprite sheet animation, part 2
File: Slick0190.htm
Published: 02/06/13
Revised: 09/03/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

A complete listing of the program discussed in this module is provided in
Listing 11
.

Listing 11
. Source code for Slick0190.

/*Slick0190.java

Copyright 2013, R.G.Baldwin


Fairly complex animation using a sprite sheet.




Listing 11
. Source code for Slick0190.

Sprite moves to right during first third of the 

animation. Sprite remains stationary during second third

of the animation. Sprite moves to the left back to the

starting point during the last third of the animation.


Much more complicated than Slick0180 for several reasons

including the following:


The sprite is moved horizontally during a portion but not

all of the animation. Movement must be synchronized with

the animation frame counter.


The sprite sheet contains only images of the dog facing

to the left. However, images of the dog facing to the

right are also required. This requires that each image

on the sprite sheet be extracted and flipped horizontally

before being fed to the Animation object for half of

the animation sequence.


The display duration for images from the first row is 

shorter than for images from the second row.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.SpriteSheet;

import org.newdawn.slick.Animation;

import org.newdawn.slick.Color;


public class Slick0190 extends BasicGame{

 Image spriteSheetImage = null;


 float spriteSheetWidth;

 float spriteSheetHeight;

 int spritesPerRow = 5;

 int spritesPerColumn = 2;




Listing 11
. Source code for Slick0190.

 int spriteWidth;

 int spriteHeight;


 int targetDelta = 16;//msec

 SpriteSheet spriteSheet;

 Animation animation = new Animation();


 //Horizontal and vertical drawing coordinates.

 float spriteX = 0;

 float spriteY = 0;


 //----------------------------------------------------//

 public Slick0190(){

   //Call to superclass constructor is required.

   super("Slick0190, Baldwin.");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0190(),450,120,false);

   app.start();//this statement is required

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {

   //Create a SpriteSheet object

   spriteSheetImage = new Image("Slick0190a1.png");

   //Enlarge the sprite sheet.

   Image temp = spriteSheetImage.getScaledCopy(580,224);

   spriteSheetImage = temp;


   spriteSheetWidth = spriteSheetImage.getWidth();

   spriteSheetHeight = spriteSheetImage.getHeight();

   spriteWidth = (int)(spriteSheetWidth/spritesPerRow);

   spriteHeight =

               (int)(spriteSheetHeight/spritesPerColumn);


   //Instantiate a new spriteSheet object based on the

   // width and height of the individual tiles on the




Listing 11
. Source code for Slick0190.

   // sheet.

   spriteSheet = new SpriteSheet(spriteSheetImage,

                                 spriteWidth,

                                 spriteHeight);


   //Populate the Animation object

   //Begin by adding four sets of five sprites from the

   // top row with the images flipped to face right.

   for(int cntr = 0;cntr < 4;cntr++){

     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

             spriteSheet.getSprite(cnt,0).getFlippedCopy(

                                        true,false),100);

     }//end inner loop

   }//end outer loop

   

   //Add two sets of five sprites from the bottom row

   // with the images flipped to face right.

   for(int cntr = 0;cntr < 2;cntr++){                     
     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

             spriteSheet.getSprite(cnt,1).getFlippedCopy(

                                        true,false),400);

     }//end inner loop

   }//end outer loop


   //Add two sets of five sprites from the bottom row

   // with the images facing left.

   for(int cntr = 0;cntr < 2;cntr++){

     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

                       spriteSheet.getSprite(cnt,1),400);

     }//end inner loop

   }//end outer loop

   

   //Add four sets of five sprites from the top row with

   // the images facing left

   for(int cntr = 0;cntr < 4;cntr++){

     for(int cnt = 0;cnt < 5;cnt++){

       animation.addFrame(

                       spriteSheet.getSprite(cnt,0),100);

     }//end for loop

   }//end for loop




Listing 11
. Source code for Slick0190.

   gc.setShowFPS(true);//display FPS

   //Set frame rate

   gc.setTargetFrameRate((int)(1000/targetDelta));


 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{


   int stepSize = 15;//Distance the sprite moves

   int frame = animation.getFrame();//animation frame

   int oneThird = animation.getFrameCount()/3;

   

   //Treat the entire animation in thirds with regard

   // to sprite movement. Move to the right during first

   // third. Stay stationary during second third. Move

   // to left back to starting point during last third.

   if(frame < oneThird){

     //Sprite is moving to the right. Compute the new

     // position.

     spriteX = frame*stepSize;

   }else if(frame < 2*oneThird){

     //Sprite is stationary. Don't change position

   }else if(frame < 3*oneThird){

     //Cause the sprite to turn around and start

     // moving to the left toward the starting point.

     //Reduce frame count by number of frames during

     // which the sprite wasn't moving.

     frame -= oneThird;

     //Compute the new position.

     spriteX = (2*oneThird - frame)*stepSize;

   }//end else if

   

 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{

   g.setDrawMode(g.MODE_NORMAL);




Listing 11
. Source code for Slick0190.

-end-

   g.setBackground(Color.gray);

   animation.draw(spriteX,spriteY);


 }//end render


}//end class Slick0190




Slick0200: Developing a sprite class
Learn how to develop a Sprite class from which you can instantiate and animate swarms of
sprite objects.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code

The class named Sprite01
The class named Slick0200

The init method
The update method
The render method

Run the program
Summary
What's next?
Miscellaneous
Complete program listings

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to teach you how to develop a sprite class (see Sprite01
)
from which you can instantiate and animate swarms of sprite objects.

Viewing tip



I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. Graphic output from program named Slick0200.
Figure 2
. Graphic output from the earlier program.

Listings

Listing 1
. Beginning of the class named Sprite01.
Listing 2
. Beginning of the class named Slick0200.
Listing 3
. Beginning of the init method.
Listing 4
. Populate the array.
Listing 5
. The update method.
Listing 6
. The move method of the Sprite01 class.
Listing 7
. The edgeBounce method of the Sprite01 class.
Listing 8
. The render method.
Listing 9
. The draw method of the Sprite01 class.
Listing 10
. Source code for the program named Slick0200.
Listing 11
. Source code for the sprite class named Sprite01.

Preview

I will present and explain a program that uses a class named Sprite01
(see Listing 11
)
to
produce an animation of 1000 ladybug sprite objects flying around inside the game window
as shown in Figure 1
.

Figure 1
. Graphic output from program named Slick0200.



Figure 1
. Graphic output from program named Slick0200.

The frame rate

As you can see from the text in the upper-left corner of Figure 1
, the program is running at
62 frames per second. My rather old desktop computer can maintain this frame rate up to
about 7000 sprite objects. Beyond that, it can no longer handle the computing load and the
frame rate begins to decrease.

What you have learned

In the previous module, you learned how to use objects of the SpriteSheet
class and the
Animation
class to perform relatively complex sprite sheet animations.

What you will learn

In this module, you will learn how to develop a sprite class from which you can instantiate
and animate swarms of sprite objects. In the next two modules, you will learn how to put
that class to work.

General background information

While the Slick2D library provides many useful classes, there is nothing to stop you from
developing your own classes to work in combination with the Slick2D library classes. That
is the thrust of this module.



In an earlier module
titled Slick0150: A first look at sprite motion, collision detection, and
timing control
, you learned how to cause a single sprite to bounce around inside the game
window as shown in Figure 2
.

Figure 2
. Graphic output from the earlier program.

Adding many more sprites would have been difficult

While it would have been possible to add more sprites to the animation by expanding the
code used in that program, the code would have quickly gotten out of hand without the use
of a sprite class and sprite objects.
(To use the common jargon, that program architecture
was not very scalable.)

Encapsulate complexity in a class

Basically, this program solves that problem by encapsulating many of the properties and
methods that are useful for manipulating sprites into a class from which sprite objects can
be instantiated. Most of the complexity is encapsulated in the class and thereby removed
from the program that uses objects of the class.

The scenario

http://cnx.org/contents/c92f070e-494f-4eb1-a0b9-e36abe4359fd


This program shows a baseball coach (
Figure 1
) being attacked by a swarm of vicious
ladybug sprites.
(Don't worry, we will find a way to save the coach in the next module.)

This program uses the class named Sprite01
to populate
the game window with 1000
ladybug sprites in different
colors with different sizes that fly around the game
window in
different directions with different speeds as shown in
Figure 1
.

Discussion and sample code

The class named Sprite01

A complete listing of this class is provided in Listing 11
. I will not explain the entire class
in detail in this module. Instead, I will provide an overview of the class and then explain
various parts of the class as I use them in this and the next two modules.

Beginning of the class named Sprite01

The beginning of the class named Sprite01
down through the constructor is shown in
Listing 1
.

Listing 1
. Beginning of the class named Sprite01.

public class Sprite01{

 Image image = null;//The sprite wears this image

 float X = 0f;//X-Position of the sprite

 float Y = 0f;//Y-Position of the sprite

 float width = 0f;//Width of the sprite

 float height = 0f;//Height of the sprite

 float xStep = 1f;//Incremental step size in pixels - X

 float yStep = 1f;//Incremental step size in pixels - Y

 float scale = 1f;//Scale factor for draw method

 Color colorFilter = null;//Color filter for draw method

 

 float xDirection = 1.0f;//Move to right for positive

 float yDirection = 1.0f;//Move down for positive

 

 int life = 1;//Used to control life or death of sprite

 




Listing 1
. Beginning of the class named Sprite01.

 boolean exposed = false;//Used in the contagion program

 

 //Constructor

 public Sprite01(Image image,//Sprite wears this image

                 float X,//Initial position

                 float Y,//Initial position

                 float xDirection,//Initial direction

                 float yDirection,//Initial direction

                 float xStep,//Initial step size

                 float yStep,//Initial step size

                 float scale,//Scale factor for drawing

                 Color colorFilter)

                   throws SlickException {


     //Save incoming parameter values

     this.image = image;

     this.X = X;

     this.Y = Y;

     this.xDirection = xDirection;

     this.yDirection = yDirection;

     this.xStep = xStep;

     this.yStep = yStep;

     this.scale = scale;

     this.colorFilter = colorFilter;

     

     //Compute and save width and height of image

     width = image.getWidth();

     height = image.getHeight();


 }//end constructor


Straightforward code

The code in Listing 1
is straightforward. It simply declares a number of instance variables,
most of which become properties of the object. Listing 1
also defines a constructor that
receives and saves values for many of those properties.

The remaining code in Sprite01

If you examine the remaining code in Listing 11
, you will see that it consists of simple
property accessor methods along with some methods that control the behavior of an object



of the class. I will explain those behavioral methods when I use them later in this and the
next two modules.

The class named Slick0200

Will discuss in fragments

A complete listing of the program named Slick0200
is provided in
Listing 10
. I will break
the program down and explain it in fragments.

Beginning of the class named Slick0200

The class named Slick0200, down through the main
method is shown in
Listing 2
.

Listing 2
. Beginning of the class named Slick0200.



Listing 2
. Beginning of the class named Slick0200.

public class Slick0200 extends BasicGame{

 

 //Store references to Sprite01 objects here.

 Sprite01[] sprites = new Sprite01[1000];

 

 //Populate this with a ladybug image later.

 Image image = null;

 

 //Populate these variables with the background

 // image along with the width and height of the

 // image later.

 Image background = null;

 float backgroundWidth;

 float backgroundHeight;

 

 //This object produces random float values for a

 // variety of purposes.

 Random random = new Random();

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //---------------------------------------------------

-//


 public Slick0200(){//constructor

   //Set the title

   super("Slick0200, baldwin");

 }//end constructor

 //---------------------------------------------------

-//


 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0200(),414,307,false);

   app.start();

 }//end main




Everything in Listing 2
is completely straightforward and should not require an explanation
beyond the embedded comments.

The init method

The init
method begins in Listing 3
.

Listing 3
. Beginning of the init method.

 public void init(GameContainer gc)

                                  throws SlickException 

{


   //Create and save the background image object. Also

   // compute and save the width and height of the 

image.

   background = new Image("background.jpg");

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();


   //Create and save an Image object of a ladybug. The

   // sprites will wear this image

   image = new Image("ladybug.png");


There is also nothing new in Listing 3
. Therefore, the embedded comments should suffice
to explain the code.

Populate the array

Listing 4
uses a for
loop to populate the array object referred to by the variable named
sprites
that was declared in Listing 2
. The array object is populated with references to
objects of the class Sprite01
.



Listing 4
. Populate the array.

   //Populate the array with references to objects of

   // the Sprite01 class.

   for(int cnt = 0;cnt < sprites.length;cnt++){

     sprites[cnt] = new Sprite01(

        image,//ladybug image

        backgroundWidth/2.0f,//initial position

        backgroundHeight/2.0f,//initial position

        (random.nextFloat() > 0.5) ? 1f : 

-1f,//direction

        (random.nextFloat() > 0.5) ? 1f : 

-1f,//direction

        0.1f+random.nextFloat()*2.0f,//step size

        0.1f+random.nextFloat()*2.0f,//step size

        random.nextFloat()*0.15f,//scale

        new Color(random.nextFloat(),//color filter

                  random.nextFloat(),

                  random.nextFloat())); 

   }//end for loop


   gc.setTargetFrameRate(targetFPS);//set frame rate


 }//end init


Random values

Note that several of the properties of each Sprite01
objects is initialized with random
values.

The use of the nextFloat
method of the object of the
Random
class may be new to you. If
so, this method simply returns a random value between 0.0f and 1.0f each time it is called.

The conditional operator

If the use of the conditional operator
involving the ? character and the : character is new to
you, you will probably need to do some online research in order to understand the use of
this operator.

Otherwise, the code in Listing 4
is straightforward and shouldn't require an explanation
beyond the embedded comments.



Listing 4
signals the end of the init
method.

The update method

The update method is shown in its entirety in Listing 5
.

Listing 5
. The update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{


   //Do the following for every sprite in the array

   for(int cnt = 0;cnt < sprites.length;cnt++){

     //Ask each sprite to move.

     sprites[cnt].move();


     //Ask each sprite to bounce off the edge if

     // necessary.

     sprites[cnt].edgeBounce(

                       

backgroundWidth,backgroundHeight);

   }//end for loop


 }//end update


Move and bounce

Listing 5
uses a for
loop to access each of the sprite objects, asking each object to move
and
to bounce
off the edge of the game window if necessary.

Listing 5
could hardly be simpler. That is because the necessary complexity has been
encapsulated in each object of the Sprite01
class.

The move method of the Sprite01 class



Listing 6
shows the move
method from the class named Sprite01
.

Listing 6
. The move method of the Sprite01 class.

 public void move(){

   X += xDirection*xStep;

   Y += yDirection*yStep;

 }//end move


The code in Listing 6
is also simple. However, in this case, the simplicity is somewhat
deceiving. The apparent simplicity derives from the fact that the four required property
values are routinely maintained by the object and are readily available to the two statements
in the move
method when needed.

The edgeBounce method of the Sprite01 class

The edgeBounce
method of the Sprite01
class is shown in
Listing 7
. It is not simple.

Listing 7
. The edgeBounce method of the Sprite01 class.



Listing 7
. The edgeBounce method of the Sprite01 class.

 public void edgeBounce(float winWidth,float winHeight){

   //Test for a collision with one of the edges and

   // cause to sprite to bounce off the edge if a

   // collision has occurred.

   if(X + width*scale >= winWidth){

     //A collision has occurred.

     xDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the

     // width of the sprite.

     X = winWidth - width*scale;

   }//end if

   

   //Continue testing for collisions with the edges

   // and take appropriate action.

   if(X <= 0){

     xDirection = 1.0f;

     X = 0;

   }//end if

   

   if(Y + height*scale >= winHeight){

     yDirection = -1.0f;

     Y = winHeight - height*scale;

   }//end if

   

   if(Y <= 0){

     yDirection = 1.0f;

     Y = 0;

   }//end if

 }//end edgeBounce


Code that you have seen before

Listing 7
contains essentially the same code that was written into the update
method of the
earlier module mentioned
above
. In this case, however, all of the complexity has been
encapsulated into the Sprite01
class and replaced by a single call to the edgeBounce
method in the update
method of the program named Slick0200
. Thus, the program's
update
method is now much simpler.

That concludes the discussion of the update
method for this program.



The render method

Listing 8
shows the render
method for this program.

Listing 8
. The render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{


   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);


   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw every sprite in the array.

   for(int cnt = 0;cnt < sprites.length;cnt++){

     //Ask the sprite to draw itself.

     sprites[cnt].draw();

   }//end for loop

 }//end render


}//end class Slick0200


The draw method of the Sprite01 class

The thing that is new about the code in Listing 8
is the call to the draw
method of the
Sprite01
class. That draw
method is shown in Listing 9
.

Listing 9
. The draw method of the Sprite01 class.



Listing 9
. The draw method of the Sprite01 class.

 //This method causes the sprite to be drawn each time

 // it is called.

 public void draw(){

   image.draw(X,Y,scale,colorFilter);

 }//end draw


Little reduction in complexity

In this case, moving the call to the draw
method of the Image
class from the render
method to the Sprite01
class didn't do much to reduce the complexity of the program.
However, that is because I kept the draw
method in the Sprite01
class very simple.

I could have made it much more capable and more complex by including additional
functionality. For example, I could have caused the draw
method to call the drawFlash
method (see Slick0160: Using the draw and drawFlash methods
) of the Image
class when
the life
property value goes to zero. In that case, only a silhouette of the dead sprite would
be drawn in place of the actual image of the sprite.

That concludes the discussion of the render
method.

Run the program

I encourage you to copy the code from Listing 10
and Listing 11
. Compile the code and
execute it, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Summary

In this module, you learned how to develop a sprite class from which you can instantiate
and animate swarms of sprite objects.

What's next?

In the next module, you will learn how to use the Sprite01
class from this module to write
a predator/prey simulation program involving thousands of sprites, collision detection, and
sound effects.

Miscellaneous

http://cnx.org/contents/c8d91157-8952-40b7-8cca-d15ae4f65214


This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0200: Developing a sprite class
File: Slick0200.htm
Published: 02/06/13
Revised: 10/03/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listings

Complete listings of the code discussed in this module are provided in
Listing 10
and
Listing 11
.

Listing 10
. Source code for the program named Slick0200.



Listing 10
. Source code for the program named Slick0200.

/*Slick0200.java

Copyright 2013, R.G.Baldwin


This program shows a baseball coach being attacked by a 

swarm of vicious ladybugs.


This program uses the class named Sprite01 to populate

the game window with 1000 ladybug sprites in different

colors with different sizes that fly around the game

window in different directions with different speeds.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


import java.util.Random;


public class Slick0200 extends BasicGame{

 

 //Store references to Sprite01 objects here.

 Sprite01[] sprites = new Sprite01[1000];

 

 //Populate this with a ladybug image later.

 Image image = null;

 

 //Populate these variables with the background

 // image along with the width and height of the

 // image later.

 Image background = null;

 float backgroundWidth;

 float backgroundHeight;

 

 //This object produces random float values for a

 // variety of purposes.

 Random random = new Random();




Listing 10
. Source code for the program named Slick0200.

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //----------------------------------------------------//


 public Slick0200(){//constructor

   //Set the title

   super("Slick0200, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0200(),414,307,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {


   //Create and save the background image object. Also

   // compute and save the width and height of the image.

   background = new Image("background.jpg");

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();


   //Create and save an Image object of a ladybug. The

   // sprites will wear this image

   image = new Image("ladybug.png");


   //Populate the array with references to objects of

   // the Sprite01 class.

   for(int cnt = 0;cnt < sprites.length;cnt++){

     sprites[cnt] = new Sprite01(

        image,//ladybug image

        backgroundWidth/2.0f,//initial position

        backgroundHeight/2.0f,//initial position

        (random.nextFloat() > 0.5) ? 1f : -1f,//direction

        (random.nextFloat() > 0.5) ? 1f : -1f,//direction




Listing 10
. Source code for the program named Slick0200.

        0.1f+random.nextFloat()*2.0f,//step size

        0.1f+random.nextFloat()*2.0f,//step size

        random.nextFloat()*0.15f,//scale

        new Color(random.nextFloat(),//color filter

                  random.nextFloat(),

                  random.nextFloat())); 

   }//end for loop


   gc.setTargetFrameRate(targetFPS);//set frame rate


 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{


   //Do the following for every sprite in the array

   for(int cnt = 0;cnt < sprites.length;cnt++){

     //Ask each sprite to move.

     sprites[cnt].move();


     //Ask each sprite to bounce off the edge if

     // necessary.

     sprites[cnt].edgeBounce(

                       backgroundWidth,backgroundHeight);

   }//end for loop


 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{


   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);


   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw every sprite in the array.

   for(int cnt = 0;cnt < sprites.length;cnt++){

     //Ask the sprite to draw itself.




Listing 10
. Source code for the program named Slick0200.

     sprites[cnt].draw();

   }//end for loop

 }//end render


}//end class Slick0200

//======================================================//


.

Listing 11
. Source code for the sprite class named Sprite01.

/*Sprite01.java

Copyright 2013, R.G.Baldwin


An object of this class can be manipulated as a sprite

in a Slick2D program.


Tested using JDK 1.7 under WinXP

*********************************************************/

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Sprite01{

 Image image = null;//The sprite wears this image

 float X = 0f;//X-Position of the sprite

 float Y = 0f;//Y-Position of the sprite

 float width = 0f;//Width of the sprite

 float height = 0f;//Height of the sprite

 float xStep = 1f;//Incremental step size in pixels - X




Listing 11
. Source code for the sprite class named Sprite01.

 float yStep = 1f;//Incremental step size in pixels - Y

 float scale = 1f;//Scale factor for draw method

 Color colorFilter = null;//Color filter for draw method

 

 float xDirection = 1.0f;//Move to right for positive

 float yDirection = 1.0f;//Move down for positive

 

 int life = 1;//Used to control life or death of sprite

 

 boolean exposed = false;//Used in the contagion program

 

 //Constructor

 public Sprite01(Image image,//Sprite wears this image

                 float X,//Initial position

                 float Y,//Initial position

                 float xDirection,//Initial direction

                 float yDirection,//Initial direction

                 float xStep,//Initial step size

                 float yStep,//Initial step size

                 float scale,//Scale factor for drawing

                 Color colorFilter)

                   throws SlickException {


     //Save incoming parameter values

     this.image = image;

     this.X = X;

     this.Y = Y;

     this.xDirection = xDirection;

     this.yDirection = yDirection;

     this.xStep = xStep;

     this.yStep = yStep;

     this.scale = scale;

     this.colorFilter = colorFilter;

     

     //Compute and save width and height of image

     width = image.getWidth();

     height = image.getHeight();


 }//end constructor

 //----------------------------------------------------//

 //The following accessor methods make many of the

 // important attributes accessible to the using

 // program.




Listing 11
. Source code for the sprite class named Sprite01.

 //----------------------------------------------------//

 

 public Image getImage(){

   return image;

 }//end getSprite

 //----------------------------------------------------//

 

 public void setImage(Image image) throws SlickException{

   this.image = image;

   width = image.getWidth();

   height = image.getHeight();

 }//end setImage

 //----------------------------------------------------//

 

 public float getWidth(){

   return width;

 }//end getWidth

 //----------------------------------------------------//


 public float getHeight(){

   return height;

 }//end getWidth

 //----------------------------------------------------//

 

 public float getX(){

   return X;

 }//end getX

 //----------------------------------------------------//

 

 public void setX(float X){

   this.X = X;

 }//end setX

 //----------------------------------------------------//

 public float getY(){

   return Y;

 }//end getY

 //----------------------------------------------------//


 public void setY(float Y){

   this.Y = Y;

 }//end setY

 //----------------------------------------------------//

 




Listing 11
. Source code for the sprite class named Sprite01.

 public float getXDirection(){

   return xDirection;

 }// end getXDirection

 //----------------------------------------------------//

 

 public void setXDirection(float xDirection){

   this.xDirection = xDirection;

 }//end setXDirection

 //----------------------------------------------------//

 

 public float getYDirection(){

   return yDirection;

 }//end getYDirection

 //----------------------------------------------------//

 

 public void setYDirection(float yDirection){

   this.yDirection = yDirection;

 }//setYDirection

 //----------------------------------------------------//

 

 public float getXStep(){

   return xStep;

 }//end getXStep

 //----------------------------------------------------//

 

 public void setXStep(float xStep){

   this.xStep = xStep;

 }//end setXStep

 //----------------------------------------------------//

 

 public float getYStep(){

   return yStep;

 }//end getYStep

 //----------------------------------------------------//


 public void setYStep(float yStep){

   this.yStep = yStep;

 }//end setYStep

 //----------------------------------------------------//

 

 public float getScale(){

   return scale;

 }//end getScale




Listing 11
. Source code for the sprite class named Sprite01.

 //----------------------------------------------------//


 public void setScale(float scale){

   this.scale = scale;

 }//end setScale

 //----------------------------------------------------//

 

 public Color getColorFilter(){

   return colorFilter;

 }//end getColorFilter

 //----------------------------------------------------//

 

 public void setColorFilter(

                       float red,float green,float blue){

   colorFilter = new Color(red,green,blue);

 }//end setColorFilter

 //----------------------------------------------------//



 public int getLife(){

   return life;

 }//end getLife

 //----------------------------------------------------//

 

 public void setLife(int life){

   this.life = life;

 }//end setLife

 //----------------------------------------------------//

 

 public boolean getExposed(){

   return exposed;

 }//end getExposed

 //----------------------------------------------------//

 

 public void setExposed(boolean exposed){

   this.exposed = exposed;

 }//end setExposed

 //----------------------------------------------------//

 

 //This method causes the sprite to be drawn each time

 // it is called.

 public void draw(){

   image.draw(X,Y,scale,colorFilter);

 }//end draw




Listing 11
. Source code for the sprite class named Sprite01.

 //----------------------------------------------------//

 

 //This method detects collisions between this 

 // rectangular sprite object and another rectangular

 // sprite object by testing four cases where a

 // collision could not possibly occur and assuming that

 // a collision has occurred if none of those cases

 // are true.

 public boolean isCollision(Sprite01 other){

   //Create variable with meaningful names make the

   // algorithm easier to understand. Can be eliminated

   // to make the algorithm more efficient.

   float thisTop = Y;

   float thisBottom = thisTop + height*scale;

   float thisLeft = X;

   float thisRight = thisLeft + width*scale;

   

   float otherTop = other.getY();

   float otherBottom = otherTop + 

other.getHeight()*other.getScale();

   float otherLeft = other.getX();

   float otherRight = otherLeft + 

other.getWidth()*other.getScale();


   if (thisBottom < otherTop) return(false);

   if (thisTop > otherBottom) return(false);

 

   if (thisRight < otherLeft) return(false);

   if (thisLeft > otherRight) return(false);

 

   return(true);


 }//end isCollision

 //----------------------------------------------------//

 

 public void move(){

   X += xDirection*xStep;

   Y += yDirection*yStep;

 }//end move

 //----------------------------------------------------//

 

 public void edgeBounce(float winWidth,float winHeight){

   //Test for a collision with one of the edges and




Listing 11
. Source code for the sprite class named Sprite01.

   // cause to sprite to bounce off the edge if a

   // collision has occurred.

   if(X + width*scale >= winWidth){

     //A collision has occurred.

     xDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the

     // width of the sprite.

     X = winWidth - width*scale;

   }//end if

   

   //Continue testing for collisions with the edges

   // and take appropriate action.

   if(X <= 0){

     xDirection = 1.0f;

     X = 0;

   }//end if

   

   if(Y + height*scale >= winHeight){

     yDirection = -1.0f;

     Y = winHeight - height*scale;

   }//end if

   

   if(Y <= 0){

     yDirection = 1.0f;

     Y = 0;

   }//end if

 }//end edgeBounce

 //----------------------------------------------------//


}//end class Sprite01


-end-



Slick0210: Collision detection and sound
Learn how to use the Sprite01 class developed in an earlier module to write a predator/prey
simulation program involving thousands of sprites, collision detection, and sound effects.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code

The class named Sprite01
The class named Slick0210

The init method
The update method
The isCollision method of the Sprite01 class
The render method

Run the program
Summary
What's next?
Miscellaneous
Complete program listings

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to teach you how to use the Sprite01
class developed in an
earlier module titled Slick0200: Developing a sprite class
to write a predator/prey
simulation program involving thousands of sprites along with collision detection and sound
effects.

http://cnx.org/contents/84c02677-f58d-45b7-811d-b91571187235


Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. Graphic output near the beginning of the simulation.
Figure 2
. Graphic output near the middle of the simulation.
Figure 3
. Graphic output near the end of the simulation.
Figure 4
. Output for the harmless blue sprite scenario.

Listings

Listing 1
. Beginning of the class named Slick0210.
Listing 2
. Beginning of the init method.
Listing 3
. Add a red sprite to the ArrayList object.
Listing 4
. Populate the ArrayList object.
Listing 5
. Beginning of the update method.
Listing 6
. Test for a collision.
Listing 7
. The isCollision method of the Sprite01 class.
Listing 8
. Process a collision
Listing 9
. Remove dead objects from the ArrayList object.
Listing 10
. The render method.
Listing 11
. Source code for the program named Slick0210.
Listing 12
. Source code for the class named Sprite01.

Preview

In an earlier module
titled Slick0200: Developing a sprite class
, we encountered a
baseball coach that had been attacked by a swarm of vicious ladybug sprites. I promised
you that we would later find a way to save the coach. That time has come.

In this module, I will explain a program that uses the Sprite01
class from the earlier
module to produce a simulation program with the output shown in Figure 1
, Figure 2
, and
Figure 3
.

A swarm of insects

Once again, the coach has been attacked by a swarm of 1000 insects. However, in this case,
the ladybug sprites have been replaced by vicious green beetle sprites.

http://cnx.org/contents/84c02677-f58d-45b7-811d-b91571187235


A red predator beetle

Fortunately for the coach, a red predator beetle sprite with a taste for green beetles has
come along and is gobbling up green beetles as fast as he can collide with them. (According
to the text at the top of Figure 1
, 152 of the 1000 beetles had been consumed by the time
the screen shot in Figure 1
was taken.)

Figure 1
. Graphic output near the beginning of the simulation.

A fat and happy predator beetle

Figure 2
shows the situation some time later when all but 173 of the green beetles had been
eaten. Note that the process of eating those nutritious beetles has caused the red beetle to
gain some weight in
Figure 2
.

Figure 2
. Graphic output near the middle of the simulation.



Figure 2
. Graphic output near the middle of the simulation.

Cleaning up the scraps

Figure 3
shows the situation with only 36 green beetles remaining. Collisions between the
beetles is rare at this point, so quite a bit more time will probably be required before the red
beetle can collide with and eat the remaining green beetles.

Figure 3
. Graphic output near the end of the simulation.



Figure 3
. Graphic output near the end of the simulation.

What you have learned

In the previous module, you learned how to develop a sprite class from which you can
instantiate and animate swarms of sprite objects.

What you will learn

In this module, you will learn how to use the Sprite01
class developed in the earlier
module
to write a predator/prey simulation program involving thousands of sprites,
collision detection, and sound effects.

General background information

Actually, it may have been more appropriate to describe this program in terms of jellyfish,
(which eat on the basis of opportunity)
instead of beetles, (which are more deliberate in
their actions)
.

In this program, the red sprite consumes a green sprite only when the two happen to collide
by chance. The sprites are not attracted to one another. (That would be a good exercise for a
student project - attraction plus collision.)

Two scenarios



A baseball coach is attacked by a swarm of fierce green
flying sprites. Fortunately, a red
predator sprite comes along and attacks the green sprites just in time to save
the coach.

There are two scenarios that can be simulated by setting the variable named
dieOnCollision
(see Listing 1
)
to either true
or false
.

Harmless blue sprites

In one scenario (
dieOnCollision
= false)
,
the vicious green sprites become harmless blue
sprites when they collide with the red sprite. A screen shot of this scenario is shown in
Figure 4
.

Figure 4
. Output for the harmless blue sprite scenario.

Green sprites get consumed

In the other scenario (
dieOnCollision
= true)
, the green sprites are consumed by the red
sprite upon contact and are removed from the population. This is the scenario shown in
Figure 3
.

Get fat and happy



In both scenarios, contact between a green sprite and the red sprite causes the red sprite to
increase in size.

If you allow the program to run long enough, the probability is high that all of the green
sprites will
have collided with the red sprite and will either have turned blue or will have
been consumed.

Discussion and sample code

The class named Sprite01

The class named Sprite01
is shown in Listing 12
. I will explain only those portions of that
class that I use in this program that weren't explained in the earlier module.

The class named Slick0210

Will explain in fragments

A complete listing of the class named Slick0210
is provided in
Listing 11
. I will break the
code down and explain it in fragments.

Beginning of the class named Slick0210.

The beginning of the class named Slick0210
, down through the
main
method is shown in
Listing 1
.

Listing 1
. Beginning of the class named Slick0210.

public class Slick0210 extends BasicGame{

 

 //Set the value of this variable to true to cause the

 // sprites to die on collision and to be removed from

 // the population.

 boolean dieOnCollision = true;

 

 //Store references to Sprite01 objects here.




Listing 1
. Beginning of the class named Slick0210.

 ArrayList <Sprite01> sprites = 

                               new ArrayList<Sprite01>

();

 

 //Change this value and recompile to change the number

 // of sprites.

 int numberSprites = 1000;


 //Populate these variables with references to Image

 // objects later.

 Image redBallImage;

 Image greenBallImage;

 Image blueBallImage;

 

 //Populate this variable with a reference to a Sound

 // object later.

 Sound blaster;

 

 //Populate these variables with information about the

 // background image later.

 Image background = null;

 float backgroundWidth;

 float backgroundHeight;

 

 //This object is used to produce values for a variety

 // of purposes.

 Random random = new Random();

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //---------------------------------------------------

-//


 public Slick0210(){//constructor

   //Set the title

   super("Slick0210, baldwin");

 }//end constructor

 //---------------------------------------------------

-//


 public static void main(String[] args)

                                   throws 



Listing 1
. Beginning of the class named Slick0210.

SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0210(),414,307,false);

   app.start();

 }//end main


ArrayList

There are two things that are new in Listing 1
. First there is the instantiation of an
ArrayList
object in place of the array object used in the program in the earlier module.

The use of an ArrayList
instead of an array provides more flexibility in managing a
collection of Sprite01
objects. If you are unfamiliar with the use of ArrayList
objects, just
Google the keywords baldwin java ArrayList generics
and I'm confident you will find
explanatory material that I have published on that topic.

Sound

The second new item in Listing 1
is the declaration of a reference variable of the Slick2D
Sound
class. That variable will be used to hold a reference to a Sound
object, that will be
played
each time the red sprite collides with a green sprite.

Otherwise, the code in Listing 1
is straightforward and shouldn't require further
explanation.

The init method

The init
method begins in Listing 2
.

Listing 2
. Beginning of the init method.



Listing 2
. Beginning of the init method.

 public void init(GameContainer gc)

                                  throws SlickException 

{


   //Create Image objects that will be used to visually

   // represent the sprites.

   redBallImage = new Image("redball.png");

   greenBallImage = new Image("greenball.png");

   blueBallImage = new Image("blueball.png");

   

   //Create a Sound object.

   blaster = new Sound("blaster.wav");


   //Create a background image and save information

   // about it.

   background = new Image("background.jpg");

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();


An object of the Sound class

The only thing new in Listing 2
is the instantiation of the object of type Sound
. As you can
see, the syntax for instantiation of a
Sound
object is essentially the same as for instantiating
an
Image
object.

Add a red sprite

Listing 3
calls the add
method of the ArrayList
class to add a red sprite to the
beginning of
the ArrayList
object. (Actually it add a reference to that object and not the object itself.)

You are already familiar with the constructor parameters (shown in Listing 3
) for a
Sprite01
object.

Listing 3
. Add a red sprite to the ArrayList object.



Listing 3
. Add a red sprite to the ArrayList object.

   sprites.add(new Sprite01(

      redBallImage,//image

      backgroundWidth/2.0f,//initial position

      backgroundHeight/2.0f,//initial position

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      0.1f+random.nextFloat()*2.0f,//step size

      0.1f+random.nextFloat()*2.0f,//step size

      0.5f+random.nextFloat()*1.5f,//scale

      new Color(1.0f,1.0f,1.0f)));//color filter


Populate the ArrayList object

Listing 4
uses a for
loop and the value of the variable named numberSprites
(see
Listing 1
)
to add 1000 green Sprite01
object references to the ArrayList
object.

Listing 4
. Populate the ArrayList object.



Listing 4
. Populate the ArrayList object.

   for(int cnt = 0;cnt < numberSprites;cnt++){

     sprites.add(new Sprite01(

        greenBallImage,//image

        backgroundWidth*random.nextFloat(),//position

        backgroundHeight*random.nextFloat(),//position

        (random.nextFloat() > 0.5) ? 1f : 

-1f,//direction

        (random.nextFloat() > 0.5) ? 1f : 

-1f,//direction

        0.1f+random.nextFloat()*2.0f,//step size

        0.1f+random.nextFloat()*2.0f,//step size

        random.nextFloat()*1.0f,//scale

        new Color(1.0f,1.0f,1.0f)));//color filter 

   }//end for loop


   gc.setTargetFrameRate(targetFPS);//set frame rate


 }//end init


Listing 4
also sets the target frame rate and signals the end of the init
method.

The update method

The overall behavior of the update
method is to use a for
loop to process the red sprite
against each of the green sprites and to take appropriate actions when a collision between
the red sprite and a green sprite occurs.

The update
method begins in Listing 5
.

Listing 5
. Beginning of the update method.



Listing 5
. Beginning of the update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{


   //Access to the first sprite in the ArrayList object.

   Sprite01 redBallSprite = sprites.get(0);


   //Do the following for every sprite in the ArrayList

   // object

   for(int cnt = 0;cnt < sprites.size();cnt++){

     //Get a reference to the Sprite01 object.

     Sprite01 thisSprite = sprites.get(cnt);

     

     //Ask the sprite to move according to its 

properties

     thisSprite.move();


     //Ask the sprite to bounce off the edge if it is at

     // an edge.

     thisSprite.edgeBounce(

                       

backgroundWidth,backgroundHeight);

Mostly same as before

The code in Listing 5
is mostly the same as code that you have seen before, so further
explanation should not be necessary.

Test for a collision

The code in Listing 6
is new to this module. This code calls the isCollision
method of the
Sprite01
class to test for a collision between the current green sprite and the red sprite.

Listing 6
. Test for a collision.



Listing 6
. Test for a collision.

     boolean collision = 

                  thisSprite.isCollision(redBallSprite);


What is a collision?

There are many ways to define and implement collision detection in game and simulation
programming. In this program, a collision is deemed to have occurred if any portion of the
rectangular redBallImage
overlaps any portion of the rectangular greenBallImage
. (Even
though these images appear to be round, they are drawn on a transparent rectangular
background.)

The isCollision method of the Sprite01 class

The isCollision
method of the Sprite01 class is shown in
Listing 7
.

Listing 7
. The isCollision method of the Sprite01 class.



Listing 7
. The isCollision method of the Sprite01 class.

 public boolean isCollision(Sprite01 other){

   //Create variable with meaningful names make the

   // algorithm easier to understand. Can be eliminated

   // to make the algorithm more efficient.

   float thisTop = Y;

   float thisBottom = thisTop + height*scale;

   float thisLeft = X;

   float thisRight = thisLeft + width*scale;

   

   float otherTop = other.getY();

   float otherBottom = otherTop + 

other.getHeight()*other.getScale();

   float otherLeft = other.getX();

   float otherRight = otherLeft + 

other.getWidth()*other.getScale();


   if (thisBottom < otherTop) return(false);

   if (thisTop > otherBottom) return(false);

 

   if (thisRight < otherLeft) return(false);

   if (thisLeft > otherRight) return(false);

 

   return(true);


 }//end isCollision

Methodology

This method detects a collision between the rectangular sprite object on which the method
is called and another rectangular sprite object.

The methodology is to test four cases where a
collision could not possibly have occurred
and to assume that
a collision has occurred if none of those cases
are true.

Given that as background, you should be able to use a pencil and paper along with the code
in Listing 7
to draw some rectangles and understand how the code in Listing 7
works.

Although I can't guarantee that the method won't call a collision when no collision actually
occurred, I am pretty sure that it won't miss any collisions that do occur.



Process a collision

The code in Listing 8
is executed when the call to the isCollision
method returns true.
Therefore, this code processes a collision only when one has occurred.

The code excludes collisions between the red sprite and itself, (which is an artifact of the
algorithm)
. It also excludes collisions between the red sprite and blue sprites (if they exist)
.

Listing 8
. Process a collision

     if((collision == true)&&

        (! thisSprite.getImage().equals(redBallImage)) 

&&

        (! thisSprite.getImage().equals(blueBallImage)))

{


       //A collision has occurred, change the color of

       // this sprite to blue and maybe cause it to

       // die and be removed from the population.

       thisSprite.setImage(blueBallImage);

       if(dieOnCollision){

         thisSprite.setLife(0);

       }//end if

       

       //Cause the redBallSprite to change direction on

       // a random basis.

       redBallSprite.setXDirection(

                  (random.nextFloat() > 0.5) ? 1f : 

-1f);

       redBallSprite.setYDirection(

                  (random.nextFloat() > 0.5) ? 1f : 

-1f);

       

       //Cause the redBallSprite to change stepsize on a

       // random basis.

       redBallSprite.xStep = 

                            



Listing 8
. Process a collision

0.1f+random.nextFloat()*2.0f;

       redBallSprite.yStep = 

                            

0.1f+random.nextFloat()*2.0f;

       

       //Cause the redBallSprite to grow larger

       redBallSprite.setScale(redBallSprite.getScale() +

                    (redBallSprite.getScale()) * 

0.001f);


       //Play a sound to indicate that a collision has

       // occurred.

       blaster.play();

     }//end if


   }//end for loop


Not complicated code

Although the code in Listing 8
is long and tedious, it isn't particularly complicated. It
consists mainly of calls to the accessor methods of the two sprite objects involved in the
collision to modify their property values in some way.

Turn a green sprite into a blue sprite

For example, near the top of Listing 8
, there is a call to the setImage
method of the green
sprite to change it to a blue sprite.

Kill the green sprite

This is followed by a call to the setLife
method to set the life of the (now blue)
sprite object
to 0, but only if the dieOnCollision
variable belonging to the object is true. Later on, all
sprite objects with a life
property value of 0 will be removed from the population.

And so forth

I could continue down the page describing the calls to various other accessor methods, but
that shouldn't be necessary. The embedded comments should suffice for the explanation.

Play a sound

Finally near the end of the code in Listing 8
, there is a call to the play
method belonging to
Sound
object referred to as blaster
.



Each time there is a collision between the red sprite and a green sprite, the sound loaded
earlier from the file named "blaster.wav"
is played.

The end of the for loop

Listing 8
signals the end of the for
loop, but does not signal the end of the update
method.
There is one more task to complete before the update
method terminates.

Remove dead objects from the ArrayList object

The code in Listing 9
uses an Iterator
to remove all objects having a life
property value
that is less than or equal to zero from the ArrayList
object.

Listing 9
. Remove dead objects from the ArrayList object.

   

   //Remove dead objects from the ArrayList object

   Iterator <Sprite01> iter = sprites.iterator();


   while(iter.hasNext()){

     Sprite01 theSprite = iter.next();

     if(theSprite.getLife() <= 0){

       iter.remove();

     }//end if

   }//end while loop


 }//end update


Explanation of an Iterator

The explanation of an Iterator is beyond the scope of this module. However, if you Google
the keywords baldwin java iterator
, you will find several tutorials that I have published on
this and related topics.

Listing 9
signals the end of the update
method.



The render method

The render method is shown in Listing 10
. There is nothing new in this code.

Listing 10
. The render method.

 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{


   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);


   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw every sprite in the ArrayList object.

   for(int cnt = 0;cnt < sprites.size();cnt++){

     sprites.get(cnt).draw();

   }//end for loop

   

   //Display the remaining number of sprites.

   g.drawString(

      "Sprites remaining: " + (sprites.size()),100f,10f);

   //Signal when all sprites have been eaten.

   if(sprites.size() == 1){

     g.drawString("Burp!",100f,25f);

   }//end if

 }//end render


}//end class Slick0210

//======================================================//


The end of the class

Listing 10
also signals the end of the Slick0210
class and the end of the program.

Run the program



I encourage you to copy the code from Listing 11
and Listing 12
. Compile the code and
execute it, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Summary

In this module, you learned how to use the Sprite01
class from an earlier module to write a
predator/prey simulation program involving thousands of sprites, collision detection, and
sound effects.

What's next?

In the next module, you will learn how to write a program that simulates the spread of a
fatal communicable disease within a population.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0210: Collision detection and sound
File: Slick0210.htm
Published: 02/06/13
Revised: 10/03/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.



Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listings

Complete listings of the code discussed in this module are provided in
Listing 11
and
Listing 12
.

Listing 11
. Source code for the program named Slick0210.

/*Slick0210.java

Copyright 2013, R.G.Baldwin


A baseball coach is attacked by a swarm of fierce green

flying insects. Fortunately, a red predator insect comes 

along and attacks the green insects just in time to save

the coach.


There are two scenarios that can be exercised by setting

dieOnCollision to true or false. In one scenario,

the green insects become harmless blue insects when they 

collide with the red insect. In the other case, they are 

consumed by the red insect upon contact and removed from 

the population.


In both scenarios, contact between a green insect and the 

red insect causes the red insect to increase in size.


If you allow the program to run long enough, the 

probability is high that all of the green insects will

have collided with the red insect and will either have 

turned blue or have been consumed.


Tested using JDK 1.7 under WinXP

*********************************************************/




Listing 11
. Source code for the program named Slick0210.

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;

import org.newdawn.slick.Sound;


import java.util.Random;

import java.util.ArrayList;

import java.util.Iterator;


public class Slick0210 extends BasicGame{

 

 //Set the value of this variable to true to cause the

 // sprites to die on collision and to be removed from

 // the population.

 boolean dieOnCollision = true;

 

 //Store references to Sprite01 objects here.

 ArrayList <Sprite01> sprites = 

                               new ArrayList<Sprite01>();

 

 //Change this value and recompile to change the number

 // of sprites.

 int numberSprites = 1000;


 //Populate these variables with references to Image

 // objects later.

 Image redBallImage;

 Image greenBallImage;

 Image blueBallImage;

 

 //Populate this variable with a reference to a Sound

 // object later.

 Sound blaster;

 

 //Populate these variables with information about the

 // background image later.

 Image background = null;

 float backgroundWidth;




Listing 11
. Source code for the program named Slick0210.

 float backgroundHeight;

 

 //This object is used to produce values for a variety

 // of purposes.

 Random random = new Random();

 

 //Frame rate we would like to see and maximum frame

 // rate we will allow.

 int targetFPS = 60;

 //----------------------------------------------------//


 public Slick0210(){//constructor

   //Set the title

   super("Slick0210, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                         new Slick0210(),414,307,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {


   //Create Image objects that will be used to visually

   // represent the sprites.

   redBallImage = new Image("redball.png");

   greenBallImage = new Image("greenball.png");

   blueBallImage = new Image("blueball.png");

   

   //Create a Sound object.

   blaster = new Sound("blaster.wav");


   //Create a background image and save information

   // about it.

   background = new Image("background.jpg");

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();




Listing 11
. Source code for the program named Slick0210.

   

   //Add a sprite dressed with redBallImage to the

   // beginning of the ArrayList object. Put it in the

   // center of the game window. Make the direction of

   // motion random. Make the speed of motion

   // (step size)random. Make the size random. Specify

   // a white (do nothing)color filter.

   sprites.add(new Sprite01(

      redBallImage,//image

      backgroundWidth/2.0f,//initial position

      backgroundHeight/2.0f,//initial position

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      0.1f+random.nextFloat()*2.0f,//step size

      0.1f+random.nextFloat()*2.0f,//step size

      0.5f+random.nextFloat()*1.5f,//scale

      new Color(1.0f,1.0f,1.0f)));//color filter


   //Populate the ArrayList object with sprites. Dress

   // them with a greenBallImage. Make the initial

   // position random. Make the initial direction of

   // motion random. Make the speed (step size) random.

   // Make the size (scale) random. Make the color filter

   // white (do nothing).

   for(int cnt = 0;cnt < numberSprites;cnt++){

     sprites.add(new Sprite01(

        greenBallImage,//image

        backgroundWidth*random.nextFloat(),//position

        backgroundHeight*random.nextFloat(),//position

        (random.nextFloat() > 0.5) ? 1f : -1f,//direction

        (random.nextFloat() > 0.5) ? 1f : -1f,//direction

        0.1f+random.nextFloat()*2.0f,//step size

        0.1f+random.nextFloat()*2.0f,//step size

        random.nextFloat()*1.0f,//scale

        new Color(1.0f,1.0f,1.0f)));//color filter 

   }//end for loop


   gc.setTargetFrameRate(targetFPS);//set frame rate


 }//end init

 //----------------------------------------------------//




Listing 11
. Source code for the program named Slick0210.

 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{


   //Access to the first sprite in the ArrayList object.

   Sprite01 redBallSprite = sprites.get(0);


   //Do the following for every sprite in the ArrayList

   // object

   for(int cnt = 0;cnt < sprites.size();cnt++){

     //Get a reference to the Sprite01 object.

     Sprite01 thisSprite = sprites.get(cnt);

     

     //Ask the sprite to move according to its properties

     thisSprite.move();


     //Ask the sprite to bounce off the edge if it is at

     // an edge.

     thisSprite.edgeBounce(

                       backgroundWidth,backgroundHeight);

     

     //Test for a collision between this sprite and the

     // sprite that is dressed in the redBallImage.

     boolean collision = 

                  thisSprite.isCollision(redBallSprite);


     //Process a collision if it has occurred. Exclude

     // collisions between the redBallSprite and itself.

     // Also exclude collisions between sprites dressed

     // in a blueBallImage and the redBallSprite.

     if((collision == true)&&

        (! thisSprite.getImage().equals(redBallImage)) &&

        (! thisSprite.getImage().equals(blueBallImage))){


       //A collision has occurred, change the color of

       // this sprite to blue and maybe cause it to

       // die and be removed from the population.

       thisSprite.setImage(blueBallImage);

       if(dieOnCollision){

         thisSprite.setLife(0);

       }//end if

       

       //Cause the redBallSprite to change direction on




Listing 11
. Source code for the program named Slick0210.

       // a random basis.

       redBallSprite.setXDirection(

                  (random.nextFloat() > 0.5) ? 1f : -1f);

       redBallSprite.setYDirection(

                  (random.nextFloat() > 0.5) ? 1f : -1f);

       

       //Cause the redBallSprite to change stepsize on a

       // random basis.

       redBallSprite.xStep = 

                            0.1f+random.nextFloat()*2.0f;

       redBallSprite.yStep = 

                            0.1f+random.nextFloat()*2.0f;

       

       //Cause the redBallSprite to grow larger

       redBallSprite.setScale(redBallSprite.getScale() +

                    (redBallSprite.getScale()) * 0.001f);


       //Play a sound to indicate that a collision has

       // occurred.

       blaster.play();

     }//end if


   }//end for loop

   

   //Remove dead objects from the ArrayList object

   Iterator <Sprite01> iter = sprites.iterator();


   while(iter.hasNext()){

     Sprite01 theSprite = iter.next();

     if(theSprite.getLife() <= 0){

       iter.remove();

     }//end if

   }//end while loop


 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{


   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);




Listing 11
. Source code for the program named Slick0210.

   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw every sprite in the ArrayList object.

   for(int cnt = 0;cnt < sprites.size();cnt++){

     sprites.get(cnt).draw();

   }//end for loop

   

   //Display the remaining number of sprites.

   g.drawString(

      "Sprites remaining: " + (sprites.size()),100f,10f);

   //Signal when all sprites have been eaten.

   if(sprites.size() == 1){

     g.drawString("Burp!",100f,25f);

   }//end if

 }//end render


}//end class Slick0210

//======================================================//


.

Listing 12
. Source code for the class named Sprite01.

/*Sprite01.java

Copyright 2013, R.G.Baldwin


An object of this class can be manipulated as a sprite

in a Slick2D program.


Tested using JDK 1.7 under WinXP

*********************************************************/

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;




Listing 12
. Source code for the class named Sprite01.

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Sprite01{

 Image image = null;//The sprite wears this image

 float X = 0f;//X-Position of the sprite

 float Y = 0f;//Y-Position of the sprite

 float width = 0f;//Width of the sprite

 float height = 0f;//Height of the sprite

 float xStep = 1f;//Incremental step size in pixels - X

 float yStep = 1f;//Incremental step size in pixels - Y

 float scale = 1f;//Scale factor for draw method

 Color colorFilter = null;//Color filter for draw method

 

 float xDirection = 1.0f;//Move to right for positive

 float yDirection = 1.0f;//Move down for positive

 

 int life = 1;//Used to control life or death of sprite

 

 boolean exposed = false;//Used in the contagion program

 

 //Constructor

 public Sprite01(Image image,//Sprite wears this image

                 float X,//Initial position

                 float Y,//Initial position

                 float xDirection,//Initial direction

                 float yDirection,//Initial direction

                 float xStep,//Initial step size

                 float yStep,//Initial step size

                 float scale,//Scale factor for drawing

                 Color colorFilter)

                   throws SlickException {


     //Save incoming parameter values

     this.image = image;

     this.X = X;

     this.Y = Y;

     this.xDirection = xDirection;

     this.yDirection = yDirection;

     this.xStep = xStep;

     this.yStep = yStep;

     this.scale = scale;




Listing 12
. Source code for the class named Sprite01.

     this.colorFilter = colorFilter;

     

     //Compute and save width and height of image

     width = image.getWidth();

     height = image.getHeight();


 }//end constructor

 //----------------------------------------------------//

 //The following accessor methods make many of the

 // important attributes accessible to the using

 // program.

 //----------------------------------------------------//

 

 public Image getImage(){

   return image;

 }//end getSprite

 //----------------------------------------------------//

 

 public void setImage(Image image) throws SlickException{

   this.image = image;

   width = image.getWidth();

   height = image.getHeight();

 }//end setImage

 //----------------------------------------------------//

 

 public float getWidth(){

   return width;

 }//end getWidth

 //----------------------------------------------------//


 public float getHeight(){

   return height;

 }//end getWidth

 //----------------------------------------------------//

 

 public float getX(){

   return X;

 }//end getX

 //----------------------------------------------------//

 

 public void setX(float X){

   this.X = X;

 }//end setX




Listing 12
. Source code for the class named Sprite01.

 //----------------------------------------------------//

 public float getY(){

   return Y;

 }//end getY

 //----------------------------------------------------//


 public void setY(float Y){

   this.Y = Y;

 }//end setY

 //----------------------------------------------------//

 

 public float getXDirection(){

   return xDirection;

 }// end getXDirection

 //----------------------------------------------------//

 

 public void setXDirection(float xDirection){

   this.xDirection = xDirection;

 }//end setXDirection

 //----------------------------------------------------//

 

 public float getYDirection(){

   return yDirection;

 }//end getYDirection

 //----------------------------------------------------//

 

 public void setYDirection(float yDirection){

   this.yDirection = yDirection;

 }//setYDirection

 //----------------------------------------------------//

 

 public float getXStep(){

   return xStep;

 }//end getXStep

 //----------------------------------------------------//

 

 public void setXStep(float xStep){

   this.xStep = xStep;

 }//end setXStep

 //----------------------------------------------------//

 

 public float getYStep(){

   return yStep;




Listing 12
. Source code for the class named Sprite01.

 }//end getYStep

 //----------------------------------------------------//


 public void setYStep(float yStep){

   this.yStep = yStep;

 }//end setYStep

 //----------------------------------------------------//

 

 public float getScale(){

   return scale;

 }//end getScale

 //----------------------------------------------------//


 public void setScale(float scale){

   this.scale = scale;

 }//end setScale

 //----------------------------------------------------//

 

 public Color getColorFilter(){

   return colorFilter;

 }//end getColorFilter

 //----------------------------------------------------//

 

 public void setColorFilter(

                       float red,float green,float blue){

   colorFilter = new Color(red,green,blue);

 }//end setColorFilter

 //----------------------------------------------------//



 public int getLife(){

   return life;

 }//end getLife

 //----------------------------------------------------//

 

 public void setLife(int life){

   this.life = life;

 }//end setLife

 //----------------------------------------------------//

 

 public boolean getExposed(){

   return exposed;

 }//end getExposed

 //----------------------------------------------------//




Listing 12
. Source code for the class named Sprite01.

 

 public void setExposed(boolean exposed){

   this.exposed = exposed;

 }//end setExposed

 //----------------------------------------------------//

 

 //This method causes the sprite to be drawn each time

 // it is called.

 public void draw(){

   image.draw(X,Y,scale,colorFilter);

 }//end draw

 //----------------------------------------------------//

 

 //This method detects collisions between this 

 // rectangular sprite object and another rectangular

 // sprite object by testing four cases where a

 // collision could not possibly occur and assuming that

 // a collision has occurred if none of those cases

 // are true.

 public boolean isCollision(Sprite01 other){

   //Create variable with meaningful names make the

   // algorithm easier to understand. Can be eliminated

   // to make the algorithm more efficient.

   float thisTop = Y;

   float thisBottom = thisTop + height*scale;

   float thisLeft = X;

   float thisRight = thisLeft + width*scale;

   

   float otherTop = other.getY();

   float otherBottom = otherTop + 

other.getHeight()*other.getScale();

   float otherLeft = other.getX();

   float otherRight = otherLeft + 

other.getWidth()*other.getScale();


   if (thisBottom < otherTop) return(false);

   if (thisTop > otherBottom) return(false);

 

   if (thisRight < otherLeft) return(false);

   if (thisLeft > otherRight) return(false);

 

   return(true);




Listing 12
. Source code for the class named Sprite01.

 }//end isCollision

 //----------------------------------------------------//

 

 public void move(){

   X += xDirection*xStep;

   Y += yDirection*yStep;

 }//end move

 //----------------------------------------------------//

 

 public void edgeBounce(float winWidth,float winHeight){

   //Test for a collision with one of the edges and

   // cause to sprite to bounce off the edge if a

   // collision has occurred.

   if(X + width*scale >= winWidth){

     //A collision has occurred.

     xDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the

     // width of the sprite.

     X = winWidth - width*scale;

   }//end if

   

   //Continue testing for collisions with the edges

   // and take appropriate action.

   if(X <= 0){

     xDirection = 1.0f;

     X = 0;

   }//end if

   

   if(Y + height*scale >= winHeight){

     yDirection = -1.0f;

     Y = winHeight - height*scale;

   }//end if

   

   if(Y <= 0){

     yDirection = 1.0f;

     Y = 0;

   }//end if

 }//end edgeBounce

 //----------------------------------------------------//


}//end class Sprite01




-end-



Slick0220: Simulating a pandemic
Learn how to write a program that simulates the spread of a fatal communicable disease
within a population.

Table of Contents

Preface

Viewing tip

Figures
Listings

Preview
General background information
Discussion and sample code

The class named Sprite01
The class named Slick0220

The init method
The update method
The render method

Run the program
Summary
Conclusion
Miscellaneous
Complete program listing

Preface

This module is one in a collection of modules designed to teach you about the anatomy of a
game engine.

Although the modules in this collection will concentrate on the Java game library named
Slick2D, the concepts involved and the knowledge that you will gain is applicable to
different game engines written in different programming languages as well.

The purpose of this module is to teach you how to write a program that simulates the spread
of a fatal communicable disease within a population (a pandemic)
.

Viewing tip



I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the images and listings while you are reading
about them.

Figures

Figure 1
. The disease has gained a foothold.
Figure 2
. The disease has spread into the population.
Figure 3
. The disease has receded after killing many in the population.

Listings

Listing 1
. Beginning of the class named Slick0220.
Listing 2
. Beginning of the init method.
Listing 3
. Remainder of the init method.
Listing 4
. Beginning of the update method.
Listing 5
. Process collisions.
Listing 6
. Make a cleanup pass.
Listing 7
. The render method.
Listing 8
. Source code for Slick0220.
Listing 9
. Source code for Sprite01.

Preview

In an earlier module
titled
Slick0210: Collision detection and sound
, you learned how to
write a non-trivial program involving thousands of sprites, collision detection, and sound.
We will take that concept considerably further in this module by writing a program that
simulates the spread of a fatal communicable disease within a population (a pandemic)
and
displays the results in animated graphic form.

The disease has gained a foothold

Figure 1
shows the result of inserting a single infected sprite into a population of healthy
sprites. Healthy sprites are colored green and infected sprites are colored red.

By the time the screen shot in Figure 1
was taken, the disease had gained a foothold,
several other sprites had become infected, and eight of the original 1000 sprites had died,
leaving only 992 live sprites including the seven that are infected.

http://cnx.org/contents/7fd862dc-efad-463f-beff-1a1276a4b698


Figure 1
. The disease has gained a foothold.

The disease has spread into the population

Figure 2
shows the situation some time later when the disease has spread considerably. By
this point, many sprites have become infected (and are infecting others)
and only 763 of the
original 1000 sprites are still alive including those that are infected.

Figure 2
. The disease has spread into the population.



Figure 2
. The disease has spread into the population.

The disease has receded

Figure 3
shows the situation much later. For the set of properties used to run this
simulation, the pandemic appears to be receding with 341 of the 1000 original sprites still
alive.

Figure 3
. The disease has receded after killing many in the population.



Figure 3
. The disease has receded after killing many in the population.

Properties that control the spread

Later on, I will explain the properties that control the spread of the disease. Some sets of
property values produce results similar to those shown above where the disease gains a
foothold, spreads for awhile killing many sprites, and then recedes without killing the entire
population.

Other sets of property values end up with all of the sprites having died.

Still other sets of property values end up with the disease being unable to gain a foothold
and spread beyond just a few individual sprites.

What you have learned

You have learned how to use a basic Slick2D game engine to create simulations involving
thousands of sprites, collision detection, and sound.



What you will learn

In this module, you will learn how to use what you have previously learned to write a
relatively complex (but somewhat simplified)
simulation of a real-world pandemic.

If you were to study the characteristic of pandemics, you could probably upgrade this
program to produce a better model of a pandemic. For example, an interesting student
project would be to allow healthy sprites to reproduce when they come in contact based on
a random probability function. This would allow the population to be growing at the same
time that it is dying off due to the disease. Of course, it may then be necessary to deal with
the effects of a population explosion.

General background information

This program simulates the spread of a fatal
communicable disease within a population.

A single infected sprite is introduced into a population of sprites. The disease is spread by
physical
contact between a healthy sprite and an infected sprite.

You can watch as the disease either spreads and kills the
entire population or spreads for
awhile, then recedes and
dies out.

Infected sprites are colored red. Healthy sprites are colored green. A sound is emitted
(simply to demonstrate how to emit sounds)
each time there is contact between an infected
sprite and
a healthy sprite.

The final outcome

The final outcome is determined both by chance and by several factors including:

The life expectancy of an infected sprite.
The probability of infection due to contact with
an infected sprite.
The degree of mobility of both infected and healthy sprites.
The population density of sprites.

The actual values for the first three factors for each individual are determined by a
maximum value multiplied
by a random number between 0 and 1.0.

Experimentation

Instance variables are provided for all four of these factors.
You can modify the values and
recompile the program to experiment with different combinations of the factors.

A good exercise for a student would be to create a GUI that allows the factors to be entered
more easily without having to recompile the program for
purposes of experimentation.



Discussion and sample code

The class named Sprite01

The class named Sprite01
is shown in Listing 9
. There is nothing new in Listing 9
that I
haven't explained in earlier modules.

The class named Slick0220

Will explain in fragments

A complete listing of the class named Slick0220
is provided in Listing 8
. I will break the
code down and explain it in fragments.

Beginning of the class named Slick0220.

The beginning of the class named Slick0220
, down through the main
method is shown in
Listing 1
.

Listing 1
. Beginning of the class named Slick0220.

public class Slick0220 extends BasicGame{

 

 //The values of the following variables can be changed

 // to effect the spread of the disease.

 

 //Set the life expectancy of an infected sprite

 // in frames.

 int infectedSpriteLife = 96;

 

 //Set the maximum fraction of exposed sprites that will

 // become infected.

 float probabilityOfInfection = 0.5f;

 

 //Set the maximum step size that a sprite will move in

 // one frame.

 float maxStepSize = 1;




Listing 1
. Beginning of the class named Slick0220.

 

 //Set the initial number of sprites in the population.

 int numberSprites = 1000;

 

 //References to Sprite01 objects are stored here.

 ArrayList <Sprite01> sprites = 

                               new ArrayList<Sprite01>

();

 

 //These variables are populated with references to 

Image

 // objects later.

 Image redBallImage;

 Image greenBallImage;

 

 //This variable is populated with a reference to a 

Sound

 // object later.

 Sound blaster;

 

 //These variables are populated with information about

 // the background image later.

 Image background = null;

 float backgroundWidth;

 float backgroundHeight;

 

 //This object is used to produce random values for a

 // variety of purposes.

 Random random = new Random();

 

 //This is the frame rate we would like to see and

 // the maximum frame rate we will allow.

 int targetFPS = 24;

 //---------------------------------------------------

-//


 public Slick0220(){//constructor

   //Set the title

   super("Slick0220, baldwin");

 }//end constructor

 //---------------------------------------------------

-//




Listing 1
. Beginning of the class named Slick0220.

 public static void main(String[] args)

                                   throws 

SlickException{

   AppGameContainer app = new AppGameContainer(

                          new 

Slick0220(),500,500,false);

   app.start();

 }//end main


There is nothing new in Listing 1
, so there should be no need for an explanation beyond
the embedded comments.

The init method

The init
method begins in Listing 2
.

Listing 2
. Beginning of the init method.

 public void init(GameContainer gc)

                                  throws SlickException 

{


   //Create Image objects that will be used to visually

   // represent the sprites.

   redBallImage = new Image("redball.png");

   greenBallImage = new Image("greenball.png");

   

   //Create a Sound object.

   blaster = new Sound("blaster.wav");


   //Create a background image and save information

   // about it.

   background = new Image("background01.jpg");




Listing 2
. Beginning of the init method.

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();

   

   //Add a red sprite as the first element in the

   // ArrayList object. This sprite carries the disease

   // into the population. 

   //Put it in the center of the game window. Make the

   // direction of motion random. Make the speed of

   // motion (step size)random. Make the size random.

   // Specify a white (do nothing)color filter.

   sprites.add(new Sprite01(

      redBallImage,//image

      backgroundWidth/2.0f,//initial position

      backgroundHeight/2.0f,//initial position

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      0.1f+random.nextFloat()*2.0f,//step size

      0.1f+random.nextFloat()*2.0f,//step size

      0.5f+random.nextFloat()*0.5f,//scale

      new Color(1.0f,1.0f,1.0f)));//color filter


   //This is an infected object. Set its life

   // expectancy.

   sprites.get(0).setLife(

           (int)

(random.nextFloat()*infectedSpriteLife));


Sick but not yet dead

The only new code in Listing 2
is the call to the
setLife
method at the end. In the earlier
module titled Slick0210: Collision detection and sound
, the life
property of a sprite was
always either 0 or 1. A sprite with a
life
property value of 0 was dead. A sprite with a life
property value of 1 was alive.

This program is more nuanced and uses values other than 0 and 1 for the infected red
sprites. A value of 0 still means that a sprite is dead. Any other positive value means that
the sprite is sick and dying but not yet dead.

The value assigned to the life
property for this sprite is a random value between 0 and
infectedSpriteLife
. This is one of the property values that has an impact on the extent to
which the disease spreads through the population. The longer an infected sprite lives after

http://cnx.org/contents/7fd862dc-efad-463f-beff-1a1276a4b698


becoming infected, the more healthy sprites it will infect and the more aggressive will be
the disease.

You can modify this value (see Listing 1
)
and recompile the program to experiment with
different values.

Remainder of the init method

The remainder of the init
method is shown in
Listing 3
.

Listing 3
. Remainder of the init method.

   //Populate the ArrayList object with green sprites.

   // Make the initial position random. Make the initial

   // direction of motion random. Make the speed

   // (step size) random. Make the size (scale) random.

   // Make the color filter white (do nothing).

   for(int cnt = 0;cnt < numberSprites;cnt++){

     sprites.add(new Sprite01(

        greenBallImage,//image

        backgroundWidth*random.nextFloat(),//position

        backgroundHeight*random.nextFloat(),//position

        (random.nextFloat() > 0.5) ? 1f : 

-1f,//direction

        (random.nextFloat() > 0.5) ? 1f : 

-1f,//direction

        random.nextFloat()*maxStepSize,//step size

        random.nextFloat()*maxStepSize,//step size

        1.0f,//scale

        new Color(1.0f,1.0f,1.0f)));//color filter 

   }//end for loop


   gc.setTargetFrameRate(targetFPS);//set frame rate


 }//end init


A population of healthy sprites



Listing 3
uses a for
loop to add
numberSprites
(see Listing 1
)
healthy sprites to the
population. This is another property that has an impact on the spread of the disease.
Everything else being equal, the more sparse the population, the more difficult it is for the
disease to get a foothold in the first place and the more difficult it is for the disease to
spread if it does get a foothold.

The frame rate

Listing 3
also sets the frame rate to the value of
targetFPS (see Listing 1
)
.
Note that I
slowed this program down to the standard movie frame rate of 24 fps (as opposed to the
typical 60 fps)
mainly because I wanted to run the simulation more slowly. In other words, I
wanted it to be possible to see the disease spread through the population. Also, it is a fairly
demanding program so it may not run at 60 fps on some machines.

End of the init method

Listing 3
also signals the end of the init
method.

The update method

The update
method begins in Listing 4
. This is the method where most of the added
complexity in this program resides.

Listing 4
. Beginning of the update method.



Listing 4
. Beginning of the update method.

 public void update(GameContainer gc, int delta)

                                   throws 

SlickException{


   //Move all the sprites to their new positions.

   for(int cnt = 0;cnt < sprites.size();cnt++){

     //Get a reference to the current Sprite01 object.

     Sprite01 thisSprite = sprites.get(cnt);

     //Ask the sprite to move according to its

     // properties

     thisSprite.move();


     //Ask the sprite to bounce off the edge if 
necessary

     thisSprite.edgeBounce(

                       

backgroundWidth,backgroundHeight);

   }//end for loop


Nothing new in this code fragment

The is nothing new in the code fragment shown in Listing 4
. The new code begins in
Listing 5
.

An overview of the code

Before getting down into the details of the code, I will give you a descriptive overview.

In the outer-most layer, the program uses a for
loop to examine every sprite in the
population looking for red or infected sprites.

When it finds an infected sprite, it decreases the value of its life expectancy. Then it uses an
inner for
loop to test that sprite against every sprite in the population looking for collisions.

Ignore collision with an infected red sprite

If the infected sprite collides with another infected sprite, it ignores the collision and keeps
searching the population, looking for collisions with healthy sprites.



Collision with a healthy green sprite

If the infected sprite collides with a healthy (green)
sprite, it causes that sprite to become
exposed
to the disease and plays a sound effect. (As you will see later, sprites that are
exposed to the disease don't always contract the disease.)

The state of the population

When the infected sprite has been tested for a collision with every healthy sprite, four kinds
of sprites exist in the population:

1. Healthy sprites that have not been exposed to the disease.
2. Healthy sprites that have been exposed to the disease.
3. Infected sprites that still have some remaining life.
4. Infected sprites whose life
property is less than or equal to zero, meaning that they are

dead.

A cleanup pass

An Iterator
is used to make a cleanup pass through the population.

Exposed
sprites are either converted to infected sprites or cleared of the exposure on the
basis of a random value that has a maximum value of probabilityOfInfection
(see Listing
1
)
.

Dead
sprites are removed from the population.

The code to accomplish all of this begins with the for
loop in
Listing 5
.

Listing 5
. Process collisions.

   //Search for and process collisions between

   // infected (red) sprites and healthy (green)

   // sprites. Declare the green sprite to be exposed to

   // the disease when a collision occurs.

   for(int ctr = 0;ctr < sprites.size();ctr++){

     //Get a reference to the Sprite01 object.

     Sprite01 testSprite = sprites.get(ctr);




Listing 5
. Process collisions.

     if(testSprite.getImage().equals(redBallImage)){

       //This is an infected sprite. Reduce its life.

       testSprite.setLife(testSprite.getLife() - 1);

     

       // Do the following for every sprite in the

       // ArrayList object.

       for(int cnt = 0;cnt < sprites.size();cnt++){

         //Get a reference to the Sprite01 object.

         Sprite01 thisSprite = sprites.get(cnt);

         

         //Test for a collision between this sprite and

         // the infected test sprite.

         boolean collision = 

                      

thisSprite.isCollision(testSprite);

   

         //Process a collision if it has occurred.

         // Exclude collisions between the testSprite

         // and itself and with other infected sprites.


         if((collision == true)&&
(!thisSprite.getImage().

                                  equals(redBallImage)))

{


           //A collision has occurred, set exposed to 
true

           thisSprite.setExposed(true);


           //Play a sound to indicate that a collision

           // has occurred.

           blaster.play();

         }//end if

   

       }//end for loop

     }//end if on redBallImage


You should have no difficulty matching up the code in
Listing 5
with the verbal description
given above.

Make a cleanup pass



The code in Listing 6
uses an Iterator
to make the cleanup pass described above.

Listing 6
. Make a cleanup pass.

     //Make a cleanup pass through the ArrayList object

     Iterator <Sprite01> iterB = sprites.iterator();

 

     while(iterB.hasNext()){

       Sprite01 theSprite = iterB.next();

       

       //Cause a percentage of the exposed objects to

       // contract the disease. Clear the others. 

       if((theSprite.getExposed() == true) && 

          (random.nextFloat() < probabilityOfInfection))

{

         theSprite.setImage(redBallImage);

         theSprite.setLife((int)(

                 

random.nextFloat()*infectedSpriteLife));

         theSprite.setExposed(false);

       }else{

         //Eliminate the effects of the exposure

         theSprite.setExposed(false);

       }//end else

       

       //Remove dead sprites

       if(theSprite.getLife() <= 0){

         iterB.remove();

       }//end if

     }//end while loop

     

   }//end outer for loop


 }//end update


Once again, you should have no difficulty matching up the code in
Listing 6
with the verbal
description given above.



The render method

The render method is shown in Listing 7
. There is nothing new in Listing 7
.

Listing 7
. The render method.

 public void render(GameContainer gc, Graphics g)

                                   throws 

SlickException{


   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);


   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw every sprite in the ArrayList object.

   for(int cnt = 0;cnt < sprites.size();cnt++){

     sprites.get(cnt).draw();

   }//end for loop

   

   //Display the number of sprites remaining.

   g.drawString(

      "Sprites remaining: " + 

(sprites.size()),100f,10f);

 }//end render


}//end class Slick0220


Run the program

I encourage you to copy the code from Listing 8
and Listing 9
. Compile the code and
execute it, making changes, and observing the results of your changes. Make certain that
you can explain why your changes behave as they do.

Summary



In this module, you learned how to write a program that simulates the spread of a fatal
communicable disease within a population.

Conclusion

Although I may come back and add more modules later, for now, this will be the final
module in this collection.

The objective of the collection was to explain the anatomy of a game engine. I believe I
have accomplished that objective and have also provided sample programs to illustrate the
use of the game engine.

It is worth pointing out that BasicGame
is not the only game engine architecture available
with Slick2D. The
Slick2D Wiki
refers to BasicGame
as a game container and indicates
that several others are available including:

Applet Game Container
ApplicationGDXContainer/AndroidGDXContainer

The documentation also describes a class named StateBasedGame
, which provides a
different anatomy than BasicGame
. Bucky Roberts provides a series of video tutorials on
state based games using Slick2D at
http://www.youtube.com/watch?v=AXNDBQfCd08

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Slick0220: Simulating a pandemic
File: Slick0220.htm
Published: 02/07/13
Revised: 06/11/15 for 64-bit
Revised: 10/03/15

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.

http://slick.ninjacave.com/wiki/index.php?title=Main_Page
http://www.youtube.com/watch?v=AXNDBQfCd08


I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

Complete listings of the code discussed in this module are provided in
Listing 8
and Listing
9
.

Listing 8
. Source code for Slick0220.

/*Slick0220.java

Copyright 2013, R.G.Baldwin


This program simulates the propagation of a fatal

communicable disease within a population.


A single infected sprite is introduced into a large 

population of sprites. The disease is spread by physical

contact with an infected sprite.


You can watch as the disease either spreads and kills the

entire population or spreads for awhile, then recedes and

dies out. Infected sprites are colored red. Healthy 

sprites are colored green. A sound is emitted (for drama)

each time there is contact between an infected sprite and

a healthy sprite.




Listing 8
. Source code for Slick0220.

The final outcome is determined both by chance and by 

several factors including:


-The maximum life expectancy of an infected sprite

-The maximum probability of infection due to contact with

an infected sprite

-The maximum degree of mobility of both infected and 

healthy sprites

-The population density of sprites.


The actual values for the first three factors for each 

individual are determined by the maximum value multiplied

by a random number between 0 and 1.0.


Instance variables are provided for each of these factors.

You can modify the values and recompile the program to 

experiment with different combinations of the factors.


A good exercise for a student would be to create a GUI 

that allows the factors to be entered more easily for

purposes of experimentation.


Tested using JDK 1.7 under WinXP

*********************************************************/


import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;

import org.newdawn.slick.Sound;


import java.util.Random;

import java.util.ArrayList;

import java.util.Iterator;


public class Slick0220 extends BasicGame{

 

 //The values of the following variables can be changed

 // to effect the spread of the disease.

 




Listing 8
. Source code for Slick0220.

 //Set the life expectancy of an infected sprite

 // in frames.

 int infectedSpriteLife = 96;

 

 //Set the maximum fraction of exposed sprites that will

 // become infected.

 float probabilityOfInfection = 0.5f;

 

 //Set the maximum step size that a sprite will move in

 // one frame.

 float maxStepSize = 1;

 

 //Set the initial number of sprites in the population.

 int numberSprites = 1000;

 

 //References to Sprite01 objects are stored here.

 ArrayList <Sprite01> sprites = 

                               new ArrayList<Sprite01>();

 

 //These variables are populated with references to Image

 // objects later.

 Image redBallImage;

 Image greenBallImage;

 

 //This variable is populated with a reference to a Sound

 // object later.

 Sound blaster;

 

 //These variables are populated with information about

 // the background image later.

 Image background = null;

 float backgroundWidth;

 float backgroundHeight;

 

 //This object is used to produce random values for a

 // variety of purposes.

 Random random = new Random();

 

 //This is the frame rate we would like to see and

 // the maximum frame rate we will allow.

 int targetFPS = 24;

 //----------------------------------------------------//




Listing 8
. Source code for Slick0220.

 public Slick0220(){//constructor

   //Set the title

   super("Slick0220, baldwin");

 }//end constructor

 //----------------------------------------------------//


 public static void main(String[] args)

                                   throws SlickException{

   AppGameContainer app = new AppGameContainer(

                          new Slick0220(),500,500,false);

   app.start();

 }//end main

 //----------------------------------------------------//


 @Override

 public void init(GameContainer gc)

                                  throws SlickException {


   //Create Image objects that will be used to visually

   // represent the sprites.

   redBallImage = new Image("redball.png");

   greenBallImage = new Image("greenball.png");

   

   //Create a Sound object.

   blaster = new Sound("blaster.wav");


   //Create a background image and save information

   // about it.

   background = new Image("background01.jpg");

   backgroundWidth = background.getWidth();

   backgroundHeight = background.getHeight();

   

   //Add a red sprite as the first element in the

   // ArrayList object. This sprite carries the disease

   // into the population. 

   //Put it in the center of the game window. Make the

   // direction of motion random. Make the speed of

   // motion (step size)random. Make the size random.

   // Specify a white (do nothing)color filter.

   sprites.add(new Sprite01(

      redBallImage,//image

      backgroundWidth/2.0f,//initial position

      backgroundHeight/2.0f,//initial position




Listing 8
. Source code for Slick0220.

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      (random.nextFloat() > 0.5) ? 1f : -1f,//direction

      0.1f+random.nextFloat()*2.0f,//step size

      0.1f+random.nextFloat()*2.0f,//step size

      0.5f+random.nextFloat()*0.5f,//scale

      new Color(1.0f,1.0f,1.0f)));//color filter


   //This is an infected object. Set its life

   // expectancy.

   sprites.get(0).setLife(

           (int)(random.nextFloat()*infectedSpriteLife));


   //Populate the ArrayList object with green sprites.

   // Make the initial position random. Make the initial

   // direction of motion random. Make the speed

   // (step size) random. Make the size (scale) random.

   // Make the color filter white (do nothing).

   for(int cnt = 0;cnt < numberSprites;cnt++){

     sprites.add(new Sprite01(

        greenBallImage,//image

        backgroundWidth*random.nextFloat(),//position

        backgroundHeight*random.nextFloat(),//position

        (random.nextFloat() > 0.5) ? 1f : -1f,//direction

        (random.nextFloat() > 0.5) ? 1f : -1f,//direction

        random.nextFloat()*maxStepSize,//step size

        random.nextFloat()*maxStepSize,//step size

        1.0f,//scale

        new Color(1.0f,1.0f,1.0f)));//color filter 

   }//end for loop


   gc.setTargetFrameRate(targetFPS);//set frame rate


 }//end init

 //----------------------------------------------------//


 @Override

 public void update(GameContainer gc, int delta)

                                   throws SlickException{


   //Move all the sprites to their new positions.

   for(int cnt = 0;cnt < sprites.size();cnt++){

     //Get a reference to the current Sprite01 object.

     Sprite01 thisSprite = sprites.get(cnt);




Listing 8
. Source code for Slick0220.

     //Ask the sprite to move according to its

     // properties

     thisSprite.move();


     //Ask the sprite to bounce off the edge if necessary

     thisSprite.edgeBounce(

                       backgroundWidth,backgroundHeight);

   }//end for loop


   //Search for and process collisions between

   // infected (red) sprites and healthy (green)

   // sprites. Declare the green sprite to be exposed to

   // the disease when a collision occurs.

   for(int ctr = 0;ctr < sprites.size();ctr++){

     //Get a reference to the Sprite01 object.

     Sprite01 testSprite = sprites.get(ctr);


     if(testSprite.getImage().equals(redBallImage)){

       //This is an infected sprite. Reduce its life.

       testSprite.setLife(testSprite.getLife() - 1);

     

       // Do the following for every sprite in the

       // ArrayList object.

       for(int cnt = 0;cnt < sprites.size();cnt++){

         //Get a reference to the Sprite01 object.

         Sprite01 thisSprite = sprites.get(cnt);

         

         //Test for a collision between this sprite and

         // the infected test sprite.

         boolean collision = 

                      thisSprite.isCollision(testSprite);

   

         //Process a collision if it has occurred.

         // Exclude collisions between the testSprite

         // and itself and with other infected sprites.


         if((collision == true)&&(!thisSprite.getImage().

                                  equals(redBallImage))){


           //A collision has occurred, set exposed to 
true

           thisSprite.setExposed(true);




Listing 8
. Source code for Slick0220.

           //Play a sound to indicate that a collision

           // has occurred.

           blaster.play();

         }//end if

   

       }//end for loop

     }//end if on redBallImage

     

     //Make a cleanup pass through the ArrayList object

     Iterator <Sprite01> iterB = sprites.iterator();

 

     while(iterB.hasNext()){

       Sprite01 theSprite = iterB.next();

       

       //Cause a percentage of the exposed objects to

       // contract the disease. Clear the others. 

       if((theSprite.getExposed() == true) && 

          (random.nextFloat() < probabilityOfInfection)){

         theSprite.setImage(redBallImage);

         theSprite.setLife((int)(

                 random.nextFloat()*infectedSpriteLife));

         theSprite.setExposed(false);

       }else{

         //Eliminate the effects of the exposure

         theSprite.setExposed(false);

       }//end else

       

       //Remove dead sprites

       if(theSprite.getLife() <= 0){

         iterB.remove();

       }//end if

     }//end while loop

     

   }//end outer for loop


 }//end update

 //----------------------------------------------------//


 public void render(GameContainer gc, Graphics g)

                                   throws SlickException{


   //set the drawing mode to honor transparent pixels

   g.setDrawMode(g.MODE_NORMAL);




Listing 8
. Source code for Slick0220.

   //Draw the background to erase the previous picture.

   background.draw(0,0);


   //Draw every sprite in the ArrayList object.

   for(int cnt = 0;cnt < sprites.size();cnt++){

     sprites.get(cnt).draw();

   }//end for loop

   

   //Display the number of sprites remaining.

   g.drawString(

      "Sprites remaining: " + (sprites.size()),100f,10f);

 }//end render


}//end class Slick0220

//======================================================//


.

Listing 9
. Source code for Sprite01.

/*Sprite01.java

Copyright 2013, R.G.Baldwin


An object of this class can be manipulated as a sprite

in a Slick2D program.


Tested using JDK 1.7 under WinXP

*********************************************************/

import org.newdawn.slick.AppGameContainer;

import org.newdawn.slick.BasicGame;

import org.newdawn.slick.GameContainer;

import org.newdawn.slick.Graphics;

import org.newdawn.slick.Image;




Listing 9
. Source code for Sprite01.

import org.newdawn.slick.SlickException;

import org.newdawn.slick.Color;


public class Sprite01{

 Image image = null;//The sprite wears this image

 float X = 0f;//X-Position of the sprite

 float Y = 0f;//Y-Position of the sprite

 float width = 0f;//Width of the sprite

 float height = 0f;//Height of the sprite

 float xStep = 1f;//Incremental step size in pixels - X

 float yStep = 1f;//Incremental step size in pixels - Y

 float scale = 1f;//Scale factor for draw method

 Color colorFilter = null;//Color filter for draw method

 

 float xDirection = 1.0f;//Move to right for positive

 float yDirection = 1.0f;//Move down for positive

 

 int life = 1;//Used to control life or death of sprite

 

 boolean exposed = false;//Used in the contagion program

 

 //Constructor

 public Sprite01(Image image,//Sprite wears this image

                 float X,//Initial position

                 float Y,//Initial position

                 float xDirection,//Initial direction

                 float yDirection,//Initial direction

                 float xStep,//Initial step size

                 float yStep,//Initial step size

                 float scale,//Scale factor for drawing

                 Color colorFilter)

                   throws SlickException {


     //Save incoming parameter values

     this.image = image;

     this.X = X;

     this.Y = Y;

     this.xDirection = xDirection;

     this.yDirection = yDirection;

     this.xStep = xStep;

     this.yStep = yStep;

     this.scale = scale;

     this.colorFilter = colorFilter;




Listing 9
. Source code for Sprite01.

     

     //Compute and save width and height of image

     width = image.getWidth();

     height = image.getHeight();


 }//end constructor

 //----------------------------------------------------//

 //The following accessor methods make many of the

 // important attributes accessible to the using

 // program.

 //----------------------------------------------------//

 

 public Image getImage(){

   return image;

 }//end getSprite

 //----------------------------------------------------//

 

 public void setImage(Image image) throws SlickException{

   this.image = image;

   width = image.getWidth();

   height = image.getHeight();

 }//end setImage

 //----------------------------------------------------//

 

 public float getWidth(){

   return width;

 }//end getWidth

 //----------------------------------------------------//


 public float getHeight(){

   return height;

 }//end getWidth

 //----------------------------------------------------//

 

 public float getX(){

   return X;

 }//end getX

 //----------------------------------------------------//

 

 public void setX(float X){

   this.X = X;

 }//end setX

 //----------------------------------------------------//




Listing 9
. Source code for Sprite01.

 public float getY(){

   return Y;

 }//end getY

 //----------------------------------------------------//


 public void setY(float Y){

   this.Y = Y;

 }//end setY

 //----------------------------------------------------//

 

 public float getXDirection(){

   return xDirection;

 }// end getXDirection

 //----------------------------------------------------//

 

 public void setXDirection(float xDirection){

   this.xDirection = xDirection;

 }//end setXDirection

 //----------------------------------------------------//

 

 public float getYDirection(){

   return yDirection;

 }//end getYDirection

 //----------------------------------------------------//

 

 public void setYDirection(float yDirection){

   this.yDirection = yDirection;

 }//setYDirection

 //----------------------------------------------------//

 

 public float getXStep(){

   return xStep;

 }//end getXStep

 //----------------------------------------------------//

 

 public void setXStep(float xStep){

   this.xStep = xStep;

 }//end setXStep

 //----------------------------------------------------//

 

 public float getYStep(){

   return yStep;

 }//end getYStep




Listing 9
. Source code for Sprite01.

 //----------------------------------------------------//


 public void setYStep(float yStep){

   this.yStep = yStep;

 }//end setYStep

 //----------------------------------------------------//

 

 public float getScale(){

   return scale;

 }//end getScale

 //----------------------------------------------------//


 public void setScale(float scale){

   this.scale = scale;

 }//end setScale

 //----------------------------------------------------//

 

 public Color getColorFilter(){

   return colorFilter;

 }//end getColorFilter

 //----------------------------------------------------//

 

 public void setColorFilter(

                       float red,float green,float blue){

   colorFilter = new Color(red,green,blue);

 }//end setColorFilter

 //----------------------------------------------------//



 public int getLife(){

   return life;

 }//end getLife

 //----------------------------------------------------//

 

 public void setLife(int life){

   this.life = life;

 }//end setLife

 //----------------------------------------------------//

 

 public boolean getExposed(){

   return exposed;

 }//end getExposed

 //----------------------------------------------------//

 




Listing 9
. Source code for Sprite01.

 public void setExposed(boolean exposed){

   this.exposed = exposed;

 }//end setExposed

 //----------------------------------------------------//

 

 //This method causes the sprite to be drawn each time

 // it is called.

 public void draw(){

   image.draw(X,Y,scale,colorFilter);

 }//end draw

 //----------------------------------------------------//

 

 //This method detects collisions between this 

 // rectangular sprite object and another rectangular

 // sprite object by testing four cases where a

 // collision could not possibly occur and assuming that

 // a collision has occurred if none of those cases

 // are true.

 public boolean isCollision(Sprite01 other){

   //Create variable with meaningful names make the

   // algorithm easier to understand. Can be eliminated

   // to make the algorithm more efficient.

   float thisTop = Y;

   float thisBottom = thisTop + height*scale;

   float thisLeft = X;

   float thisRight = thisLeft + width*scale;

   

   float otherTop = other.getY();

   float otherBottom = otherTop + 

other.getHeight()*other.getScale();

   float otherLeft = other.getX();

   float otherRight = otherLeft + 

other.getWidth()*other.getScale();


   if (thisBottom < otherTop) return(false);

   if (thisTop > otherBottom) return(false);

 

   if (thisRight < otherLeft) return(false);

   if (thisLeft > otherRight) return(false);

 

   return(true);


 }//end isCollision




Listing 9
. Source code for Sprite01.

 //----------------------------------------------------//

 

 public void move(){

   X += xDirection*xStep;

   Y += yDirection*yStep;

 }//end move

 //----------------------------------------------------//

 

 public void edgeBounce(float winWidth,float winHeight){

   //Test for a collision with one of the edges and

   // cause to sprite to bounce off the edge if a

   // collision has occurred.

   if(X + width*scale >= winWidth){

     //A collision has occurred.

     xDirection = -1.0f;//reverse direction

     //Set the position to the right edge less the

     // width of the sprite.

     X = winWidth - width*scale;

   }//end if

   

   //Continue testing for collisions with the edges

   // and take appropriate action.

   if(X <= 0){

     xDirection = 1.0f;

     X = 0;

   }//end if

   

   if(Y + height*scale >= winHeight){

     yDirection = -1.0f;

     Y = winHeight - height*scale;

   }//end if

   

   if(Y <= 0){

     yDirection = 1.0f;

     Y = 0;

   }//end if

 }//end edgeBounce

 //----------------------------------------------------//


}//end class Sprite01




-end-


	Slick0100: Getting started with the Slick2D game library
	Slick0110: Overview
	Slick0120: Starting your program
	Slick0130: The game loop
	Slick0140: A first look at Slick2D bitmap graphics
	Slick0150: A first look at sprite motion, collision detection, and timing control
	Slick0160: Using the draw and drawFlash methods.
	Slick0170: Mouse and keyboard input
	Slick0180: Sprite sheet animation, part 1
	Slick0190: Sprite sheet animation, part 2
	Slick0200: Developing a sprite class
	Slick0210: Collision detection and sound
	Slick0220: Simulating a pandemic

